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h  i g  h  l  i g  h  t  s

• We  describe  non-parametric  estimates  of  conditional  directionality  between  signals.
• Scalar  metrics  decompose  the  conditional  product  moment  correlation  by  direction.
• Additional  functions  decompose  the  partial  coherence  estimate  by  direction.
• Method  is  applied  to  simulated  (cortical  neuron)  and  real  (hippocampal  LFP)  data.
• Framework  can  be applied  to  time  series  and  spike  train  data.
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a  b  s  t  r  a  c  t

Background:  The  ability  to infer network  structure  from  multivariate  neuronal  signals  is  central  to
computational  neuroscience.  Directed  network  analyses  typically  use  parametric  approaches  based  on
auto-regressive  (AR)  models,  where  networks  are  constructed  from  estimates  of AR model  parameters.
However,  the  validity  of  using  low  order  AR models  for neurophysiological  signals  has  been  questioned.
A  recent  article  introduced  a non-parametric  approach  to estimate  directionality  in  bivariate  data,  non-
parametric  approaches  are  free  from  concerns  over  model  validity.
New  method:  We  extend  the  non-parametric  framework  to include  measures  of directed  conditional  inde-
pendence,  using  scalar  measures  that decompose  the  overall  partial  correlation  coefficient  summatively
by  direction,  and  a set of  functions  that  decompose  the  partial  coherence  summatively  by direction.  A  time
domain  partial  correlation  function  allows  both  time  and  frequency  views  of  the data  to  be  constructed.
The  conditional  independence  estimates  are  conditioned  on  a single  predictor.
Results:  The  framework  is applied  to simulated  cortical  neuron  networks  and  mixtures  of Gaussian  time
series  data  with  known  interactions.  It is applied  to  experimental  data  consisting  of local  field  potential
recordings  from  bilateral  hippocampus  in anaesthetised  rats.
Comparison  with  existing  method(s):  The  framework  offers  a non-parametric  approach  to  estimation  of
directed  interactions  in  multivariate  neuronal  recordings,  and  increased  flexibility  in dealing  with  both
spike  train  and  time  series  data.
Conclusions:  The  framework  offers  a novel  alternative  non-parametric  approach  to  estimate  directed
interactions  in multivariate  neuronal  recordings,  and  is  applicable  to spike  train and  time  series  data.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Directed network analyses are widely used in neuroscience to
infer network structure in multivariate neural recordings (Rubinov
and Sporns, 2010). The majority of approaches are parametric,
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which rely on estimating the parameters of a model to describe the
patten of interactions between the observed signals, typically using
auto-regressive (AR) models (Granger, 1969; Geweke, 1982). Once
the AR parameters have been estimated different metrics relating
to directionality can be constructed directly as a function of the
model parameters (Baccala and Sameshima, 2001; Kaminski et al.,
2001; Chen et al., 2006; Schelter et al., 2006; Chicharro, 2012).
A number of concerns have been raised regarding the validity of
AR models to accurately capture the complex structure present
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in multivariate neural and other time series typically encoun-
tered in scientific problems (Gersch, 1972; Thomson and Chave,
1991; Lindsay and Rosenberg, 2011). A number of alternative non-
parametric approaches have been considered to describe directed
interactions in neurophysiological signals (Gersch, 1972; Eichler
et al., 2003; Lindsay and Rosenberg, 2011; Dhamala, 2008a,b). A
recent article introduced a non-parametric framework for direc-
tionality analysis of bivariate data (Halliday, 2015), with application
to single unit spike train data.

The concept of conditional independence is a powerful one that
is widely used in partial regression models where the effects of
variables that are believed to influence the correlation between
dependent variables are removed to provide a more accurate
description of any dependency (e.g. Ezekiel and Fox, 1958). The use
of conditional causality measures to distinguish between direct and
indirect influences has been considered in parametric approaches
to directionality. Granger (1969) considers two and three variable
models, leading in the three variable model case to a partial cross
spectrum from which causal and feedback relationships between
two variables conditioned on a third can be derived. An alterna-
tive parametric approach using information theoretic measures
(Geweke, 1982) has also been extended to include conditioning
variables (Pierce, 1982; Geweke, 1984). Related approaches are
considered in Chen et al. (2006) and Guo et al. (2008).

This paper presents a novel extension to the non-parametric
approach in Halliday (2015) for multivariate data by presenting a
framework for analysis of three random processes. We  also inves-
tigate applicability of the framework to both time series data and
spike train data. One advantage of considering time series data
is that measures derived from residual and conditional variance
metrics can readily be calibrated against known (simulated) data.
We undertake such a comparison to establish the accuracy and
usefulness of our multivariate extension. The approach is fur-
ther validated through application to experimental data consisting
of local field potential recordings from bilateral hippocampus in
anaesthetised rat. Our results demonstrate the flexibility of the
non-parametric approach in dealing with both spike train and time
series data. Our novel approach should therefore have broad appli-
cability across a wide range of electrophysiological data.

The paper is arranged as follows. Section 2 presents the meth-
ods including sub-sections on algorithms and significance testing.
Section 3 describes results from application of the conditional non-
parametric framework to simulated cortical neuron networks, to
artificial mixtures of Gaussian time-series used to verify quan-
titative aspects of the framework and to the experimental data.
Conclusions and discussion are in Section 4.

2. Methods

Our framework assumes that random processes have wide-
sense (weak) stationarity (Brillinger, 1975; Priestley, 1981). The
approach can be applied to time series data and point-process data.
Point process data are represented using differential increments
which count the number of spikes in a small interval, which we
assume to be the sampling interval �t  (Rosenberg et al., 1989;
Conway et al., 1993). Point processes are also assumed to be orderly,
i.e. only one spike can occur in each sampling interval (Conway
et al., 1993). In the derivation below (x, y, z) refer to three random
processes which can be either time series or point process differ-
ential increments, or mixtures of the two data types. We  use the
term multivariate in the manuscript, since we are considering the
analysis of three simultaneous random processes. However, only a
single predictor is used, the possibility of extending the analysis to
multiple predictors is considered in the discussion.

2.1. Theory

For bivariate random processes (x, y) a scalar measure of overall
dependence is given by the squared correlation coefficient (Pierce,
1979; Halliday, 2015). This is defined in terms of ordinary and resid-
ual variances as

R2
yx =

�2
y − �2

y|x
�2

y

(1)

The conditioned variance, �2
y|x can be equated to the variance of

the error process after a linear regression of y on x. Eq. (1) can be
interpreted as the fraction of the variance in y that can be accounted
for by the regressor x. It is a symmetrical measure which does not
provide any indication of directionality of interaction.

To account for any common effect that process z may  have on
both x and y a partial correlation coefficient can be used

R2
yx|z =

�2
y|z − �2

y|x,z

�2
y|z

(2)

In this case both processes x and y are conditioned on the third
process z. Partial regression is widely used in situations where it
is believed that the predictor, z, can account for some or all of the
original association between x and y. The objective is to distinguish
a genuine correlation, R2

yx|z , from an apparent or induced correla-
tion, R2

yx. Throughout this paper we  use linear models and consider
linear interactions.

The relationship between the scalar R2
yx and the coherence func-

tion, |Ryx(�)|2 was  used as the starting point for the derivation of
non-parametric directionality measures in Halliday (2015). The fre-
quency domain equivalent of the partial regression coefficient, Eq.
(2), is the partial coherence function

|Ryx|z(�)|2 = |fyx|z(�)|2
fxx|z(�)fyy|z(�)

(3)

where fyx|z(�) is the partial cross power spectral density (or partial
cross-spectrum) between processes x and y with predictor z. The
two partial auto-spectra are fxx|z(�) and fyy|z(�). Partial coherence
estimates have proved useful in identifying direct interactions from
common inputs in functional connectivity studies of neural circuits
(Rosenberg et al., 1998; Eichler et al., 2003; Salvador et al., 2005;
Medkour et al., 2009).

The link between the partial coherence function in Eq. (3)
and the partial correlation coefficient in Eq. (2) can be made by
considering the residual variance in the partial regression model,
�2

y|x,z . In the frequency domain this residual variance is the resid-
ual spectrum fyy|x,z(�). Using the same derivation as the bivariate
framework (Halliday, 2015) we can derive the result

∣∣Ryx|z(�)
∣∣2 = fyy|z(�) − fyy|x,z(�)

fyy|z(�)
(4)

We have used the partial gain function (Halliday et al., 1995),
fyx|z(�)/fxx|z(�), in this derivation. Thus, as in the bivariate case, there
is a close correspondence between the partial coherence function in
Eq. (4) and the partial regression coefficient in Eq. (2). The partial
coherence function decomposes the R2 value by frequency, thus
R2

yx|z can be recovered by integrating the partial coherence

R2
yx|z =

1
2�

∫ +�

−�

∣∣Ryx|z(�)
∣∣2

d� (5)

where the partial coherence is defined over the normalised angluar
frequency range [−�, +�].

Application of the minimum mean square error (MMSE) pre-
whitening step (Eldar and Oppenheim, 2003) is next applied to
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