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Realizing the importance of forest carbon monitoring and reporting in climate change, the present study was
conducted to derive spectrallymodeled aboveground biomass andmitigation using Landsat data in combination
with sampled field inventory data in the coniferous forests of Western Himalaya. After conducting preliminary
survey in 2009, 90 quadrats (45 each for calibration and validation) of 0.1 ha were laid in six forest types for
recording field inventory data viz. diameter at breast height, height, slope and aspect. Biomass carbon
(Mgha−1)wasworked out for different forest types and crowndensity classes (openwith 10–40% crowndensity
and closed with N40% crown density) using recommended volume equations, ratios and factors. Biomass carbon
map (aboveground + belowground) was generated for the entire region using geospatial techniques. Normal-
ized difference vegetation index (NDVI) was generated and spectral values were extracted to establish relation
(R2 = 0.72, p b 0.01) with the field inventory data. The model developed was validated (R2 = 0.73, p b 0.01)
with 45 sample observations not used earlier for predicting and generating biomass carbon map (2009) for
the entire region. The data from field based inventory indicates highest total biomass carbon (171.40, σ ±
23.19) Mg ha−1 for Fir–Spruce (closed) which has relatively more mature girth classes and low tree density.
This value was found to be significantly higher than other forest types. Lowest biomass carbon was observed
for Blue Pine (open) (37.15, σ ± 11.82) Mg ha−1. The NDVI values for the entire region ranged from 0 to 0.62
and consequently the spectrally derived aboveground biomass carbon varied from 0 to 600 Mg ha−1. The
study demonstrates the application of mapping, spectral responses and sampled field inventory for type wise
assessment of carbon mitigation in temperate coniferous forests of Himalayas.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Forest ecosystems recognized as the critical components in the
global carbon are estimated to contain 80% of the aboveground (AG)
and 40% of the belowground (BG) terrestrial carbon stocks (Brown
and Lugo, 1984; Dixon et al., 1994). Recent estimates have shown the
current carbon stock in the world's forests to be 861 ± 66 Pg with
383±30 (44%) in soil (to 1mdepth), 363±28Pg (42%) in live biomass
(AG and BG), 73 ± 6 Pg (8%) in deadwood, and 43 ± 3 Pg (5%) in litter
(Pan et al., 2011). However other estimates indicate to contain 450 to
650 Pg in vegetation biomass (IPCC, 2013; Prentice et al., 2001) and
1500 to 2400 Pg in dead organic matter and soils (Batjes, 1996; IPCC,
2013). Forest loss accounts for a significant share of global greenhouse
gas emissions estimated between 12% (Van der Werf et al., 2009) and
17% (IPCC, 2007). The increasing concern for climate change at national

and international level has led to increased focus on sustainable carbon
management in forestry (FAO, 2010). Carbon estimates in forests
are significantly important for locations which have data gaps like
Himalayan region of Kashmir and the north western part of Indian
Himalayaswhich pose great challenges to collect information on carbon
forestry. Moreover a long gestation period is involved in developing and
implementing adaptation strategies in forestry sector (Ravindranath
and Sathaye, 2002) which makes it difficult to efficiently monitor the
forests.

In the present scenario carbon management is viewed as an impor-
tant activity in the context of greenhouse and climatic changes at
national and international level (Ravindranath and Ostwald, 2008).
Hence, it becomes extremely important to produce regional estimates
regarding the dynamics in carbon to assess the role of forestry in climate
change (Fang et al., 2006). The role of forests in mitigating climate
change is actively being considered under the agenda of reducing emis-
sions from deforestation in developing countries REDD+ (UNFCCC,
2008). Geospatially valid carbon monitoring and accounting would
lead to increase in international agreements on carbon emissions in
context to REDD+ (Angelson, 2008; Asner et al., 2012; De Sy et al.,
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2012). Geospatial mapping of forest resources based on field plot
inventory data has enabled to extrapolate the sample data over larger
scales (Asner, 2009; Asner et al., 2013; Baccini et al., 2013; Goetz et al.,
2009; Saatchi et al., 2011). Although very recently airborne LIDAR
borne sample data integrated with satellite data and in-situ observa-
tions generate more efficient forest carbon maps (Gautam et al., 2010;
Kandel, 2013; Kandel et al., 2014) however, the technique is yet to
evolve in this Kashmir Himalayan region due to political hindrances
and high costs. Aboveground and belowground biomass form the
predominant carbon pools followed by soil, litter and deadwood
(IPCC, 2003, 2006). The results regarding carbon densities however,
vary owing to heterogeneity across forest types (Houghton et al.,
2009) and adoption of different methodologies (Kishwan et al., 2009).
This paper discusses biomass carbon values for different forest types
and density classes in the coniferous forests of Western Himalayan
region. Our results generate data on forest biomass carbon (AG and
BG) to establish relation between biomass field inventory data and
spectral values of vegetation index estimated from satellite data.

2. Methods

2.1. Study area

Geographically the area under investigation lies approximately
between 33° 21′ 57.6″ to 34° 15′ 25.2″ north latitude and 74° 52′ 58.8″
to 75° 32′ 20.4″ east longitude (Fig. 1). The area occupies southern
portion of Kashmir Himalayas. It has an annual precipitation of 660–
1400 mm with an average temperature of around 13 °C which also
goes subzero in winter months. The main forest types include Lower
western Himalayan temperate forest, West Himalayan dry temperate
deciduous forest,West Himalayan subalpine Fir forest, deciduous alpine
scrub and alpine pastures (Champion and Seth, 1968). The forests in the

region are predominantly coniferous with some mixed composition at
fewplaces (Champion and Seth, 1968; Joshi et al., 2001). The conifers in-
clude Blue Pine (Pinus wallichiana), Himalayan Cedar (Cedrus deodara),
Fir (Abies pindrow) and Spruce (Picea smithiana). Additionally associa-
tions of Himalayan Yew (Taxus baccata) and Juniper (Juniperus recurva)
can also be found. The distribution pattern of conifers is guided by the
elevation, climate, aspect, slope, geology and soil.

2.2. Pilot survey

We carried out a reconnaissance survey to collect preliminary infor-
mation about the study area for developing a scheme of classification.
Stratified random sampling design was adopted to choose the specific
sampling sites on the basis of variability in vegetation. We divided the
forest area into three primary strata on the basis of forest types:
(i) Blue Pine, (ii) Fir–Spruce and (iii) Himalayan Cedar. Within these
forest types simple random sampling was adopted for actual ground
measurements (diameter at breast height and height of trees) for deter-
mination of variance. Sample size was obtained on the basis of variance
in these ground measurements using the formula by Chako (1965):

n ¼ t2 � CV2

SE%ð Þ2

where n=number of sample plots, CV= coefficient of variation, SE%=
standard error percentage (10%) and t = statistical value at 95% signif-
icance level.

2.3. Field measurements

We carried out field measurements in the years 2010 and 2011
(June–October each year). Sample size (n) was worked out to be 45.
All the square shaped sample quadrats (0.1 ha)were laid out in different
forest types for tree measurements. Additional 45 quadrats of same
shape and size were laid to generate data for validation of spectrally
modeled biomass. Calibration and validation quadrats were selected
randomly within each forest type. We measured diameter at breast
height (DBH) and tree height (h) for all the trees having DBH N10 cm
using Ravi multi-meter and tree caliper respectively. The position of
quadrats was recorded using hand held global positioning system
(GPS) unit. Additional information viz. slope, aspect, altitude, tree
density etc. about the site was also recorded. We recorded canopy
density for each sample plot with convex spherical crown densitometer
by averaging the four readings inside each quadrat. The scheme of
classification adopted for density classes was followed as per FSI
(2005) with canopy density 10–40% for open forests and N40% for
closed forests. The investigation sites were spread across five forest
ranges (Table 1) with a significant variation in elevation and slope.

2.4. Volume and biomass and mitigation

Regression general equations (Table 2) were used as per volume
equations recommended by FSI (1996).

We calculated volume of trees using DBH and height which was
further converted into biomass (AG) using specific gravities of the
respective species as per Rajput et al. (1996).We converted commercial
bole into total aboveground biomass using biomass expansion factor
(BEF) of 1.3 (FAO, 1997). Althoughmore qualitative BEF based on forest
age, forest density and forest site quality (Fang et al., 2002; Teobaldelli
et al., 2009) or volume based (Guo et al., 2010) could have been used
but such BEFs have not been worked out previously for these forest
types in the region. We computed biomass (BG) using a factor of 0.26
as recommended by Cairns et al. (1997) which is very close to the
ratio recommended for temperate coniferous forests (Mokany et al.,
2006) with shoot biomass N50 Mg ha−1. We further converted total
biomass into carbon equivalent using a factor of 0.50 (Bhadwal and

Fig. 1. Study area showing location of 0.1 ha sample quadrats (for interpretation of the
references to color in this figure legend, the reader is referred to the web version of the
article).
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