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a b s t r a c t

Occupancy modelling using data collected by repeatedly sampling sites is a common approach utilised by
land managers to understand species distributions and trends. Two important factors that can complicate
interpretation of these models are imperfect detection and spatial autocorrelation. We examine the effect
of these potential errors using a multi-year data set on the distribution of the migratory and endangered
swift parrot (Lathamus discolor). We simultaneously account for these effects by extending a zero-inflated
Binomial (ZIB) framework to allow the inclusion of semiparametric, smooth spatial terms into both the
occupancy and detection component of the model, in a maximum likelihood framework easily imple-
mented in common software. This approach also has the advantage of relatively straightforward model
selection procedures. We show that occupancy and detectability were strongly linked to food availability,
but the strength of this relationship varied annually. Explicitly recognising spatial variability through the
inclusion of semiparametric spatially smooth terms in the ZIBs significantly improved models in all years,
and we suggest this predictor is an effective proxy for unmeasured environmental covariates or conspe-
cific attraction. Importantly, the spatially explicit ZIBs predicted fewer occupied sites in more defined
areas compared to non-spatial ZIBs. Given the importance of predicted distributions in land management,
habitat protection and conservation of swift parrots, these models serve as an important tool in under-
standing and describing their ecology. Our results also reinforce the need for designing surveys that cap-
ture the underlying spatial structure of an ecosystem, especially when studying mobile aggregating
species.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Effective population monitoring is fundamental to threatened
species management and conservation planning (Martin et al.,
2007; Sanderson et al., 2006). The importance of developing effec-
tive monitoring designs and analytical approaches has generated
considerable discussion (Reynolds et al., 2011; Rhodes and
Jonzén, 2011; Wintle et al., 2010), particularly regarding the need
to identify and account for sources of error. When the results of
monitoring identify the need for management responses that are
contentious, expensive or impact on industry, accounting for error
becomes especially important (Martin et al., 2007).

Highly mobile, rare or cryptic species can be difficult and
expensive to monitor. Because resources are often limited, collect-
ing detection/non-detection data from a sample of sites to be ana-
lysed within an occupancy-modelling framework is a popular
approach among land management agencies (Kéry et al., 2013).
Consequently, occupancy models and the relationship between
occupancy and abundance, have been used extensively to estimate
species density, distributions and habitat associations (e.g. Gaston
et al., 2000; Hui et al., 2006). Estimating and accounting for false
negative error rates or detection probability is fundamental to
improving the reliability of occupancy models (MacKenzie et al.,
2002; Martin et al., 2005; Royle and Nichols, 2003; Tyre et al.,
2003; Wintle et al., 2004). The most common approach involves
repeatedly sampling sites to estimate detection probability p,
defined as the probability a species will be detected in a single site
visit given that it occupies that site (MacKenzie et al., 2002). The
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detection process is commonly influenced by the behaviour and
abundance of the target species (Gu and Swihart, 2004;
McCarthy et al., 2013), and if there is spatial or temporal heteroge-
neity in p, establishing its relationships with environmental
variables can reduce bias in parameter estimators and improve
sampling strategies (e.g. Bailey et al., 2004; Gibson, 2011; Lahoz-
Monfort et al., 2014).

Errors in interpreting ecological relationships can also arise if
spatial autocorrelation (SAC) is ignored, or not accounted for in
the distribution of the target species (Dormann, 2007; Hawkins,
2012; Legendre, 1993). Generally, SAC originates from either an
autocorrelated environment (i.e. where nearby locations are more
similar than more distant ones) or through processes like conspe-
cific attraction and limited dispersal ability of the target species
(Lichstein et al., 2002). Importantly, recognition and analysis of
SAC can provide insights into ecological processes that may other-
wise be overlooked (Bini et al., 2009; Hawkins, 2012) and the effect
of spatial structure has been recognised as an important compo-
nent in modelling the occupancy-abundance relationship (Hui
et al., 2006).

Recently, considerable attention has focused on improving sta-
tistical methods to account for either SAC or imperfect detection;
however, relatively few studies have formally accounted for these
processes simultaneously (but see Aing et al., 2011; Bled et al.,
2011; Johnson et al., 2013; Royle et al., 2007). Some studies have
accounted for spatial correlation in discrete spatial domains
(Johnson et al., 2013; Royle et al., 2007; Wintle and Bardos,
2006), while others have focused on the detection process in tran-
sect based or cluster sampling designs (Aing et al., 2011; Guillera-
Arroita et al., 2010, 2012; Hines et al., 2010). Other approaches
model spatial variability through the inclusion of spatially corre-
lated random fields (Diggle et al., 1998; Post van den Burg et al.,
2011). Most of these studies, and other occupancy models that
contain autocorrelation structure adopt a hierarchical Bayesian
perspective (see also Gardner et al., 2010; Hoeting et al., 2000;
Sargeant et al., 2005).

In this study, we use the endangered swift parrot (Lathamus dis-
color) to illustrate the importance of accounting for SAC and detec-
tion when modelling the distribution of mobile, cryptic and
threatened species. Swift parrots are a migratory nectarivorous
species seriously threatened by anthropogenic habitat loss
throughout their range (Higgins, 1999). Their breeding range is
restricted to the island of Tasmania, Australia, where they nest in
tree hollows and rely on the erratic flowering of the Tasmanian
blue gum (Eucalyptus globulus subsp. globulus) and black gum
(Eucalyptus ovata) for food (Webb et al., 2012). However, there
are few empirical data that quantify the relationship between nec-
tarivores and flowering at macroecological scales. The very specific
nesting and food requirements of the swift parrot, and the need for
hollows and flowering to occur in the same area, make the species
highly vulnerable to the effects of continuing habitat degradation
and loss (Webb et al., 2012).

A key question for land managers is: how much habitat needs to
be protected to conserve the species? Approximately one-third of
the swift parrots potential breeding habitat is afforded varying lev-
els of protection through the Comprehensive, Adequate and Repre-
sentative (CAR) Reserve System (see Commonwealth of Australia,
1992). However, conservation (or protection) of non-reserved land
(e.g. private land, production forest) that contains breeding habitat
is highly contentious (Allchin et al., 2013) and can have serious
economic implications for stakeholders. In this context, the relative
importance of a particular area to swift parrots is often heavily
scrutinised, especially where information is limited. Accurate,
annual spatiotemporal information on the distribution of swift
parrots, and the availability of their nesting and feeding habitat,
is required to identify ecologically relevant spatial scales of

management, prioritise key sites or regions, develop and inform
off-reserve management actions, and set spatially explicit thresh-
olds for habitat loss.

Given the dependence of swift parrots on flower for food, its use
as a key explanatory variable was a logical starting point for our
analyses. However, it is likely that other environmental or behav-
ioural factors also influence occupancy and detection. From a logis-
tical or economic perspective, it is often difficult to identify or
measure these factors. We hypothesised that explicitly incorporat-
ing a smoothed spatial covariate in the occupancy and/or detect-
ability component of zero-inflated Binomial models (ZIB) in a
generalised additive model (GAM) framework, should help explain
a large proportion of the variation due to these unknown or
unmeasured factors. Our approach models the autocorrelation
through smoothed functions of spatial coordinates where space
is viewed as inherently continuous. This is in contrast to
approaches that discretize space into regions or sites, and model
spatial correlation through correlated random effects defined over
sites in a Bayesian hierarchical framework (e.g. Bled et al., 2011;
Johnson et al., 2013 and references therein; Wintle and Bardos,
2006). Our approach is more similar to geostatistical models in
which spatial variability is modelled as spatially correlated random
fields (e.g. Diggle et al., 1998; Post van den Burg et al., 2011). How-
ever, by modelling spatial variability through smooth functions of
spatial coordinates rather than correlated random fields, our mod-
els can be fitted with standard maximum likelihood methods
avoiding the need for complex Markov Chain Monte Carlo
techniques.

Here we describe the design and implementation of a monitor-
ing program, and associated analytical techniques, to better
understand the spatial ecology of swift parrots and inform a land-
scape-scale conservation management strategy. We fitted Binomial
models (with perfect detection), and zero-inflated Binomial models
(that accounted for imperfect detection) with and without a smooth
spatial covariate in GAM and generalised linear model (GLM)
frameworks respectively, to test our hypothesis about the impor-
tance of spatial location. Using these models, we mapped the pre-
dicted distribution of swift parrots to illustrate dramatic
spatiotemporal variation in their occurrence and detectability,
while highlighting the importance of accounting for SAC. We also
used simulated spatially structured data to form more generalised
insights from our models.

2. Methods

2.1. Study area and sampling regime

We sampled across the known breeding range of the swift par-
rot (broadly defined by the natural range of E. globulus), which is
restricted to Tasmania and covers approximately 10,000 km2

(Fig. A1, Webb et al., 2012). Swift parrot detection/non-detection
data were collected by repeatedly sampling a number of distinct
sites over a three-week period in October 2009–2012 (number of
sites ranged from 771 to 1034). A site was defined as a 200 m
radius around a fixed point and the number of site visits, across
all years, ranged from one to eight with a mean of 2.4 (see Appen-
dix A for detailed sampling protocols). Flowering intensity (0–4
scale) was also recorded during these visits. Minimizing the
amount of time taken for each annual survey reduced the likeli-
hood of changes in detectability and violation of the assumption
of closure, which is inherent in the models utilised (MacKenzie
et al., 2006; Rota et al., 2009). A small subset of sites (n = 16) from
the north-west of Tasmania that were geographically distinct from
the rest of the sites (Fig. A1) was not used in the analyses to reduce
their disproportionate impact as spatial outliers.
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