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Recent advances in causalmodeling havemade it possible to build and test structural equationmodelswithout any
restriction on the functional forms or error distributions of the structural equations.We propose here amethod for
building and testing causal models that uses ordination axes arising frommultivariate species data. This is demon-
strated through the analysis of macrobenthic species abundance data observed at multiple times before and after
the 1978 Amoco Cadiz oil spill (Dauvin, 1982). The available data consist of 21 quarterly observations on 257
species during the period 1977–1982. A causal model of the impact and subsequent recovery was built and tested
using distance-based redundancy analysis (dbRDA). In addition, to predict the time required for recovery of the
community, nonlinear models were fitted to the first two PCO axes, and the fitted nonlinear models were used
to generate predictions for 20 years beyond the last observation in the data set. These predictions were found to
compare favorablywith the results from longer term studies carried out by Dauvin (1998). Themethods described
here are sufficiently well established to be used in ecological research, and will allow ecologists to move towards
plausible causal models and generate stronger inferences from observational multivariate community data than
has been achieved to date.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Observational studies in ecology have a long and noble history
(e.g., Emerson, 1836; Hutchinson, 1957; Von Humboldt, 1805;
Wallace, 1855;Whittaker, 1960). Structured quantitative observational
field studies of ecological systems are still considered essential for both
the description of ecological patterns and the generation of ecological
hypotheses concerning potential underlying processes that might give
rise to those observed patterns (Underwood et al., 2000). However,
causal inference regarding actual processes through the analysis of ob-
servational patterns alone is problematic (Popper, 1968; Underwood,
1990). Experimental studies that manipulate hypothesized processes
and eliminate the effects of potentially confounding variables are
necessary for stronger causal inference (Fisher, 1955; Hurlbert,
1984; Underwood, 1997). Nevertheless, well-designed observation-
al studies remain a principal method of inquiry in ecology. In many
situations, experiments to pinpoint causal processes are either infeasi-
ble or unethical, and ecologists are often more interested in under-
standing complex systems rather than individual processes. Ecologists
are also increasingly interested to test theories at very broad temporal
(evolutionary) and spatial (global) scales (e.g., Gotelli et al., 2009), for
which experimental manipulations would be simply impossible.

Structural equationmodeling (SEM) is often employed in ecology to
address some of these issues by combining a qualitative description of
the causal processes thought to be operating within a system, in the
form of a path diagram (or causal diagram), with the statistical analysis
of observational data (Grace, 2006; Pugesek, 2003; Shipley, 2000a).
SEM has advanced considerably in recent years due largely to the
work of two groups of researchers — one led by the computer scientist
Judea Pearl at the Cognitive Systems Laboratory at UCLA, and the other
by the philosophers Peter Spirtes, Clark Glymour and Richard Scheines
at Carnegie Mellon University (see, for example, Pearl (1995, 2000)
and Spirtes et al. (2000)). This framework, called causal modeling or
structural causal modeling (Pearl, 2009), uses the developments in
graphical models and the logic of intervention to clarify the causal con-
tent of SEM.

Causal diagrams are now established as a mathematical language,
and as such their role in causal modeling extends far beyond being a
convenient tool for communicating a (composite) causal hypothesis or
deriving algebraic equations, as path diagrams have traditionally been
used in SEM. Specifically, the structure of a causal diagram entails certain
probabilistic constraints, in the form of conditional independencies,
which can be read directly from the diagram using a graphical criterion
called d-separation. These constraints underpin the causal content of
SEM: they are the basis from which to determine the identifiability of
causal effects (i.e., determinewhether an effect of interest can be isolated
from the effects of potentially confounding variables), they constitute the
testable part of the causal model, and they help define the nontestable
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part (i.e., the class of equivalent models) and thereby gauge the strength
of causal inferences drawn from the model.

The connection between graphicalmodels and statisticalmodels has
also led to a new approach for testing structural equation models, one
which enables local tests of causal structures, as well as global tests in
some cases, and does not require the usual assumption of multivariate
normality (Pearl, 2000; Shipley, 2000a, 2000b). This approach allows
model building and testing to be done with conventional statistical
methods and general-purpose statistics packages (Shipley, 2000b),
including – we suggest here – canonical correspondence analysis
(CCA, ter Braak, 1986), redundancy analysis (RDA, Gittins, 1985; Rao,
1964), and distance-based redundancy analysis (dbRDA), (Legendre
and Anderson, 1999; McArdle and Anderson, 2001) for the analysis of
multivariate species data.

Causal modeling of multivariate species data, per se, is not new.
Legendre and Troussellier (1988) developed a method for choosing
among competing causal structures that describe the possible relation-
ships among a set of species, a set of environmental variables, and a set
of geospatial coordinates. They compared the values ofMantel and partial
Mantel statistics, computed from resemblancematrices for the three sets
of variables, with the values expected for a given causal structure. Leduc
et al. (1992) used Mantel statistics in conjunction with a path analysis
procedure to calculate path coefficients, i.e., standardized partial regres-
sion coefficients. Borcard and Legendre (1994) proposed using partial
canonical analysis (i.e., constrained ordination analysis) as an alternative
to partial Mantel tests in causal analyses. This approach uses RDA or CCA
to partition the variation in a community into environmental and spatial
components, which are then interpreted with respect to a set of compet-
ing causalmodels suggested by the authors. Thesemethods are described
in Legendre and Legendre (2012, Chapters 10 and 11).

The partitioning of multivariate variation according to a suite of
environmental, spatial, temporal or other predictor variables, followed
by a scientist's own interpretation, is certainly useful and appealing
for analyzing ecological patterns in community structure. It does not,
of itself, however, achieve the goal of allowing rigorous inferences re-
garding actual underlying causal processes (e.g., such as so-called
“niche” or “neutral” dynamics) that might shape those communities
(Anderson et al., 2011).

We propose that ordination axes can be modeled directly within
the structural equation approach of a causal modeling framework,
which allows ecologists to move towards plausible causal models
and to generate stronger inferences from observational multivariate
community data than has been achieved to date. This approach also
yields working statistical models with a causal (mechanistic) basis
that can be used for making predictions.

Here, we demonstrate the use of dbRDA and nonlinearmodels of PCO
axes in causal modeling, with a special emphasis on environmental im-
pact studies involving multivariate community data. An example is
shown in an analysis of the response of an assemblage of macrobenthic
species to the 1978 Amoco Cadiz oil spill, using data collected by
Dauvin (1982). We begin by providing the background to the Amoco
Cadiz data set in Section 2. In Section 3 we describe the causal diagrams
that might apply in cases where data on the sediment oil concentration
and water temperature may or may not be available. In Section 4 we
explain the d-separation criterion and its application in determining
that the effect of the oil spill is identifiable with the available data. In
Section 5 we derive the structural equation model from the causal
diagram, and in Section 6 we suggest functional forms for the structural
equations, based on theory. Section 7 describes the exploratory analyses
that were undertaken prior to model building and testing, which are
described in Sections 8 and 9. Section 10 describes a complementary
procedure to causal modeling with dbRDA that uses nonlinear models
of PCO axes for the purpose of predicting the recovery time of the
macrobenthic community following the oil spill. We conclude by
summarizing the main elements of the causal modeling process and
highlighting areas for future research. All of the analyses were done

using the R computer package (R Development Core Team, 2010), and
the entirety of the R code and data used are provided as supplementary
online material.

2. Background to the Amoco Cadiz data set

The Amoco Cadiz oil tanker ran aground off the coast of France in
1978, spilling 1.6 million barrels of oil. The slick spread to the Bay of
Morlaix within about a week of the event. For approximately one and
a quarter years prior to the spill, Dauvin (1982) had been monitoring
the macrobenthic community in the soft sediments of the Bay of
Morlaix at approximately quarterly intervals, andmonitoring continued
for a number of years afterwards. The data used here are an example
dataset included in version 6 of PRIMER (Clarke, 1993; Clarke and
Gorley, 2006). These data are also provided as supplementary online
material (see the Supplement for details). The data set consists of 21
quarterly samples taken from the sandy sediments of the Bay ofMorlaix
between April 1977 and February 1982, with counts recorded for each
of 257 macrobenthic species. The Amoco Cadiz ran aground on March
16, 1978, between the fifth and sixth sampling occasions.

3. Constructing the causal diagram

Designing environmental impact studies in away that dealswith spa-
tial and temporal confounding has been a subject of much consideration
and debate in the literature (Ellis and Schneider, 1997; Green, 1979;
Hurlbert, 1984; Smith et al., 1993; Stewart-Oaten and Bence, 2001;
Stewart-Oaten et al., 1986; Underwood, 1991, 1992). Using the causal
modeling framework, Paul (2011) indicated that spatial and temporal
confounding in environmental impact studies may be controlled by con-
ditioning on (adjusting for) the actual spatial or temporal positions of
sample units. This was articulated in the context of a causal model for
the response of a single species to an environmental impact. However,
the idea is easily extended to a multivariate set of response variables
(Pearl, 2000, d-separation, p. 16), such as multivariate species data.

Based on the work of Paul (2011), a possible causal diagram for the
Amoco Cadiz study is shown in Fig. 1A. The variables are defined as fol-
lows: “temporal position” (Z1) is the time of sampling in a rank-ordered
sequence of integers (1, 2,…, 21), “temperature” (Z2) is the water tem-
perature, “time from exposure” (Z1) is the time of sampling minus the
first time of sampling after the spill (−5,−4,…,15), “spill” (X) is a bina-
ry variable contrasting the periods before vs. after the occurrence of the
oil spill, “oil” (Z4) is the sediment oil concentration, and “species abun-
dance” (Y) is the multivariate species abundance data.

WhenDauvin (1982) beganmonitoring the Bay ofMorlaix hewould
not have anticipated this oil spill, so there are no oil data. Furthermore,
there were no temperature data recordedwith this data set. According-
ly, the first causal model to be built will correspond to the causal
diagram shown in Fig. 1B, i.e., the causal diagram without either of the
mediating variables of temperature or oil. (Note that a mediating
variable, also known as an intervening variable, is a variable that lies
on the causal path between two other variables.) However, to demon-
strate model building with mediating variables the sea surface temper-
ature data for a reasonably proximate site at Plymouth, UK, will be
substituted for the temperature within the Bay of Morlaix. Themonthly
mean sea surface temperature data at Plymouthwere obtained from the
Centre for Environment, Fisheries & Aquaculture Science (CEFAS, 2011).
The augmented causal diagram is shown in Fig. 1C. It must be stressed
here that this is being done for demonstration purposes only; it is not
appropriate in an actual model-building situation to simply substitute
variables in a causal diagram with variables that were measured at
some other site.

The causal diagram is a graphical description of the hypothesized
data-generating process. Imagine, for example, that this study was done
as an experiment in a laboratorywhere the experiment had three factors:
spill (treated with oil or not), temperature (with various levels that
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