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a b s t r a c t

Quantification of the contributions from anthropogenic sources to soil heavy metal loadings on regional
scales is challenging because of the heterogeneity of soil parent materials and high variability of
anthropogenic inputs, especially for the species that are primarily of lithogenic origin. To this end, we
developed a novel method for apportioning the contributions of natural and anthropogenic sources by
combining sequential extraction and stochastic modeling, and applied it to investigate the heavy metal
pollution in the surface soils of the Pearl River Delta (PRD) in southern China. On the average, 45e86% of
Zn, Cu, Pb, and Cd were present in the acid soluble, reducible, and oxidizable fractions of the surface soils,
while only 12e24% of Ni, Cr, and As were partitioned in these fractions. The anthropogenic contributions
to the heavy metals in the non-residual fractions, even the ones dominated by natural sources, could be
identified and quantified by conditional inference trees. Combination of sequential extraction, Kriging
interpolation, and stochastic modeling reveals that approximately 10, 39, 6.2, 28, 7.1, 15, and 46% of the
As, Cd, Cr, Cu, Ni, Pb, and Zn, respectively, in the surface soils of the PRD were contributed by anthro-
pogenic sources. These results were in general agreements with those obtained through subtraction of
regional soil metal background from total loadings, and the soil metal inputs through atmospheric
deposition as well. In the non-residual fractions of the surface soils, the anthropogenic contributions to
As, Cd, Cr, Cu, Ni, Pb, and Zn, were 48, 42, 50, 51, 49, 24, and 70%, respectively.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Identifying the sources of heavy metals in soils and quantifying
the exact contributions from natural and anthropogenic sources
can be important for developing appropriate pollution prevention
and control regulations. Heavy metals in soils can originate from
both natural processes (e.g., volcano eruptions and weathering of
rocks) and human activities (e.g., mining and fossil fuel combus-
tion), thus their presence at high levels in the surface soils of a
particular area does not necessarily point to pollution by human
activities (Hooda, 2010; Shuman, 1991). Source identification and
apportionment of heavy metal pollution in surface soils is partic-
ularly challenging for large-scale regions because of the high spatial

variability of heavy metal contents in surface soils caused by both
heterogeneous parent materials and widespread human activities.
Multivariate statistical analyses, such as correlation matrix, prin-
cipal component analysis, and cluster analysis, were widely used to
investigate the interrelationships of different heavy metals, which
can help distinguish the contributions from natural and anthro-
pogenic sources (Facchinelli et al., 2001; Huang et al., 2015; Mamat
et al., 2014). Mapping based on geographical information system
(GIS) and spatial analysis are also popular tools to understand the
spatial distribution patterns and identify the likely sources of
metals in surface soils. In general, these methods can only provide
descriptive information and identify the pollution sources roughly.
Recently, dataminingmethods, including decision tree and random
forest, have been used to identify the impact factors for soil metal
contents, to understand the influence of soil properties and human
activities on metal contents, and to quantify the contributions from
natural and anthropogenic sources (Hu and Cheng, 2013; Lin et al.,
2010; Wang et al., 2015; Zhang et al., 2008).

* This paper has been recommended for acceptance by B. Nowack.
* Corresponding author.

E-mail address: hefac@umich.edu (H. Cheng).

Contents lists available at ScienceDirect

Environmental Pollution

journal homepage: www.elsevier .com/locate/envpol

http://dx.doi.org/10.1016/j.envpol.2016.04.028
0269-7491/© 2016 Elsevier Ltd. All rights reserved.

Environmental Pollution 214 (2016) 400e409

Delta:1_given name
Delta:1_surname
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envpol.2016.04.028&domain=pdf
mailto:hefac@umich.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envpol.2016.04.028&domain=pdf
www.sciencedirect.com/science/journal/02697491
http://www.elsevier.com/locate/envpol
http://dx.doi.org/10.1016/j.envpol.2016.04.028
http://dx.doi.org/10.1016/j.envpol.2016.04.028
http://dx.doi.org/10.1016/j.envpol.2016.04.028


Although the total contents of heavy metals in soils can provide
useful information on the distributions and sources of pollution,
the chemical fractionation of them, i.e., the forms or phases in
which they occur, can reveal much more details on the mineralogy
and chemistry of the soils, as well as their release potentials under
various conditions (Tack and Verloo, 1995; Templeton et al., 2000;
Tessier et al., 1979). According to Shuman (1991), heavy metals
are found in soils in a variety of forms, including (i) soluble form in
the soil solution; (ii) ionic form bound at the exchangeable sites of
the inorganic constituents; (iii) adsorbed form on the surface of the
inorganic constituents; (iv) precipitated/co-precipitated form on
the surface of the inorganic constituents; (v) sorbed form bound to
the soil organic matter; (vi) components of the secondary minerals;
and (vii) components of the primary minerals. The chemical frac-
tionation of heavy metals in soils and sediments is experimentally
determined by sequential extraction, in which a series of selective
extracting agents are used to remove the heavy metals bound to
different fractions or phases (Maiz et al., 1997; Tessier et al., 1979;
Usero et al., 1998). Among the several sequential extraction
methods that have been established, the modified BCR procedure,
in which the metals are separated as the acid soluble, reducible,
oxidizable, and residual fractions, has been proven to be a useful
and widely acceptedmethod (Favas et al., 2011; Kubova et al., 2008;
Kumar et al., 2013; Pueyo et al., 2008; Rauret et al., 2000; Svete
et al., 2001; Zhang et al., 2012).

Heavy metals present in the matrices of primary and secondary
minerals are gradually released into the more bioavailable and
mobile fractions during the weathering of soil parent materials and
leaching of soils (Hooda, 2010). Meanwhile, deposition of heavy
metals associated with the aerosol particles released from volcanic
eruption and forest fires also results in their enrichment in surface
soils, primarily in the relatively bioavailable and mobile fractions,
while heavy metals introduced by human activities are also ex-
pected to be enriched in these fractions. Heavy metals released
from anthropogenic sources (e.g., industrial wastewater and
vehicular emissions) can bind to different soil phases and compo-
nents, including organic matter, carbonates, and oxides through a
range of processes, such as ion exchange, adsorption, co-
precipitation, and complexation, which affect their fractionation,
mobility, and bioavailability in soils (Carrillo-Gonzalez et al., 2006;
Garcia et al., 2005; Hooda, 2010). In contrast, heavy metals in the
residual fraction mainly exist in the lattices of the primary and
secondary soil minerals, and are barely subjected to the influence of
human activities in general (Shuman, 1991). Thus, chemical frac-
tionation of heavymetals can reveal more detailed information and
offer valuable insights on their sources, and the natural and
anthropogenic contributions to soil heavy metals can be more
evident from evaluating the non-residual fractions compared to the
total contents.

The Pearl River Delta (PRD), which is located in Guangdong
province of southern China (N 21�480e22�270, E 113�030e114�190), is
one of the world's largest manufacturing bases. Widespread
contamination of surface soils by a range of pollutants, including
heavy metals, has occurred in the region during the course of rapid
industrialization and urbanization over the past three decades. The
total contents of major heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn)
in the surface soils of the PRD were measured, and their sources
were identified using a combination of geospatial analysis, multi-
variate statistics, and stochastic modeling in our previous work (Hu
and Cheng, 2013; Hu et al., 2013). However, for As, Cr, and Ni, which
are predominantly of lithogenic origin, the relatively small contri-
butions of anthropogenic inputs could not be accurately quantified
(Hu and Cheng, 2013).

This study aimed to develop a novel method that can improve
the accuracy of source apportionment of soil heavy metals,

particularly for the species dominated by the soil parent materials,
by combining sequential extraction and stochastic modeling. The
main hypothesis was that the contributions from human activities
to soil heavy metals could be identified and quantified more
accurately in the non-residual fractions, which are contributed by
both natural and anthropogenic sources (in contrast, metals in the
residual fraction are predominantly of lithogenic origin), using
stochastic modeling techniques, such as decision tree and random
forest, compared to the analysis based on the total metal contents.
The performance of this method was tested by applying it to
investigate the heavymetal pollution in the surface soils of the PRD,
and the results were validated by comparison with the estimations
based on subtraction of regional soil background from soil metal
loadings and the soil metal inputs through atmospheric deposition.

2. Materials and method

2.1. Soil samples and chemical analysis

A total of 227 soil samples were collected in the surface layer
(0e10 cm) of the PRD region that covered approximately
6.81 � 104 km2 of land area (Fig. S1), based on a hexagonal sam-
pling scheme, as described in a previous work (Hu et al., 2013). The
contents of total organic carbon (TOC) of these soil samples were
measured by an elemental analyzer, while their total contents of
heavy metals were determined by inductively coupled plasma-
mass spectrometry (ICP-MS) after microwave-assisted acid diges-
tion. Sequential extraction of the heavy metals from the soil sam-
ples were conducted following the modified BCR procedure. Details
of the sample digestion, sequential extraction, and instrumental
analysis are presented in the Supplementary Information.

2.2. Data preparation

Before construction of the decision trees, the outliers of the data
sets were detected and removed based on interquartile range (IQR),
which is the width of the box in the box-and-whisker plot. In sta-
tistical analysis, an outlier is the erroneous or “surprising” data that
“does not follow the same model as the rest of the data” (Weisberg,
1985). Outliers affected the identification of split factors and the
subsequent splitting procedures during the tree construction, and
no meaningful impact factors could be identified in many cases
when such extreme values were present. In this study, outliers
were identified as any observations outside the range of
[Q1�1.5IQR, Q3þ1.5IQR], where Q1 and Q3 are the lower quartile and
upper quartile, respectively, and IQR ¼ Q3 e Q1. It is worth noting
that some nodes in the decision trees constructed contain
extremely high values that prevent further split. Although such
data could also be classified as outliers, they were kept in the
analysis because some nodes had relatively small populations and
over-fitting could result from removal of too many data points.
While the metal concentrations did not follow normal or log
normal distribution, log transformation of the data was not
considered in this study because this would magnify the distribu-
tion of low concentration data (presumably “unpolluted” soil
samples) but diminish that of the high concentration data (pre-
sumably soil samples that had been subjected to significant human
influence).

2.3. Stochastic modeling

Conditional inference tree (CIT), which allows unbiased analysis
and handles both categorical and continuous variables while
overcoming the problems of over-fitting and biased variable se-
lection (Hothorn et al., 2006; Strobl et al., 2007), was employed to
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