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a b s t r a c t

A novel application of self-organizing map (SOM) and multivariate statistical techniques is used to model
the nonlinear interaction among basin mineral-resources, mining activity, and surface-water quality.
First, the SOM is trained using sparse measurements from 228 sample sites in the Animas River Basin,
Colorado. The model performance is validated by comparing stochastic predictions of basin-alteration
assemblages and mining activity at 104 independent sites. The SOM correctly predicts (>98%) the pre-
dominant type of basin hydrothermal alteration and presence (or absence) of mining activity. Second,
application of the DavieseBouldin criteria to k-means clustering of SOM neurons identified ten unique
environmental groups. Median statistics of these groups define a nonlinear water-quality response along
the spatiotemporal hydrothermal alteration-mining gradient. These results reveal that it is possible to
differentiate among the continuum between inputs of background and mine-related acidity and metals,
and it provides a basis for future research and empirical model development.

Published by Elsevier Ltd.

1. Introduction

In thewesternU.S.,mining activities produce acid-minedrainage
with elevated concentrations of potentially toxic trace elements
(Church et al., 2007). Although drainage from inactive mines can
affect surface-water quality, the background weathering of altered
andmineralized bedrock can also be a sourceofmetals andacidity in
historical mining districts (Bove, 1996; Miller et al., 1999; Plumlee
et al., 1999; Bove and Knepper, 2000). Knowledge of background
water quality in mining-affected areas is particularly important for
establishing technically feasible remediation goals. The traditional
approach for estimatingbackgroundmetal contributions is basedon
the examination of historical data (Runnells et al., 1998). Given that
premining water-quality data are not available from most mined
areas, various forms of modeling can be employed to estimate
background metal contributions (Mast et al., 2007).

Several issues are likely to confuse modeling the effects of
mineral-resources and mining on the environment (Mast et al.,
2007). First, the effects of hydrothermal alteration and mining ac-
tivities on the environment are spatiotemporal and therefore not
well understood. For example, possible causes for a modified

environmental response can include scale-dependent changes in
quantity and(or) quality of both surface and groundwater. Some
changes in water quantity may occur in response to increased
runoff volume, flood frequency, and peak storm flows; and reduced
groundwater recharge and baseflow contributions to streams.
Changes inwater quality may occur in response to the interaction of
water with natural and anthropogenic sources, mixing surface-
water and ground-water, chemical reactions, and differences in
residence times. Second, the field observations used to characterize
the coupled and nonlinear response of environmental forcing at
different scales are irregular, noisy and sparse. This makes the
construction and calibration of process-based models difficult and
trend analysis nonunique and uncertain. For this reason, most
studies of mineral-resource effects focus on interpreting the pre-
sent occurrence and distribution of water quality using univariate
(Schmidt et al., 2012) and linear multivariate statistical approaches
(Mast et al., 2007).

One alternative nonlinear modeling paradigm is to mine data
using an artificial neural network. Artificial neural networks are a
generalized data-driven modeling group that includes supervised
and unsupervised training methods. The successful application of
supervised training methods depends on accurately specifying
weights and the output layer of the network prior to its deployment
(Hsu et al.,1995). One unsupervisedmethod that requires no a prioriE-mail address: mfriedel@usgs.gov.
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knowledge of underlying relations or designation of an output layer
is the self-organizing map (SOM) technique (Kohonen, 2001). Some
recent SOM-based environmental modeling applications include
design-hyetographs (Lin andWu, 2007), surface-water hydrographs
(Kalteh et al., 2008), water toxic risk (Gevrey et al., 2010), stream
water-chemistry (Zelazny et al., 2011), hillslope-chemical weath-
ering (Iwashita et al., 2011a), soil properties (Iwashita et al., 2011b),
post-fire hazards (Friedel, 2011), soil wettability (Xiong et al., 2011),
groundwater exploration (Friedel et al., 2012), climate change trends
(Friedel, 2012), stream source-water apportionment (Yang et al.,
2013), and rainfall-runoff (Nourani et al., 2013).

In this study, the aim is to understand the relation of water-
quality to background and mining-related acidity and metals. We
hypothesize that basin measurements sampled across a spatio-
temporal gradient can provide sufficient information in the un-
derlying density function for model development, prediction and
discrimination. The objectives are to (1) develop and apply a
nonlinear classifier for predicting the relative contributions of
background hydrothermal alteration and mining activity from
water-quality samples, and (2) develop and interpret a conceptual
model of the nonlinear water-quality response along a hydrother-
mal alteration-mining gradient. This approach extends the work of
Mast et al. (2007) who sought to characterize sources of metals to
surface water in Colorado using a linear multivariate modeling
approach, and Friedel (2011, 2012) who used a SOM and multivar-
iate statistical approach to derive conceptual models of hydrologic
and geomorphic hazards associated with a post-fire landscape in
western U.S., and conceptual models of groundwater hydrogeology
in fractured crystalline bedrock in northeastern Brazil.

2. Methodology

Modeling mineral-resource effects on the environment is undertaken using a
type of unsupervised neural network (Kohonen, 2001), called a self-organizing map
(SOM). Application of the SOM technique to spatiotemporal mineral-resource and
stream water-quality data is a three-step procedure. First, these data are used to
train the SOM and estimate missing values. Second, the model diversity and per-
formance is evaluated using cross-validation. Third, a conceptual model of mineral-
resource effects on the basin water-quality response is derived using nonlinear
multivariate techniques.

2.1. Training and estimation

The SOM training process provides away of representing multidimensional data
in a lower dimensional space than the original data set (Fig. 1). Reducing the

dimensionality is based on an iterative process (Kohonen, 1984) that is performed
each time an input pattern is presented to the map: competition to determine the
best matching unit (BMU) vector and cooperative learning (spreading information
contained in the current input vector across the map).

In the first training step, a weight vectorWi with the same dimensionality as the
input data vectors Vj is assigned to grid neurons in the SOM (Fig. 2). Following an
iterative procedure, the SOM is constructed considering the differences between the
normalized input vector Vj and the weights Wi of the neurons given by

Dij ¼ �
Wi � Vj

�T �Wi � Vj
�
; (1)

where T is the transpose. Normalization of the input vectors is conducted with
respect to their standard deviations.

In the second step, aweight update is determined as a function of the distance to
the current BMU, expressed through the Gaussian neighborhood function 4(D,n).
The rate used to adjust the weight of neurons decreases with distance D between
each neuron and BMU. Updates of the weights are adjusted according to

Wi nþ 1ð Þ ¼ Wi nð Þ þ a nð Þf D;nð Þ Vi nð Þ � Wi nð Þ½ �; (2)

where a(n)is a scalar value called the learning rate. The association effect takes place
at the neighboring nodes but to a lesser degree because of the Gaussian shape. This
adaption procedure stretches the weight vectors of the BMU and its topological
neighbors towards the input vector. Presenting similar input vectors to the map
provides further activations in the same neighborhood and thereby tends to produce
clustering of data in the feature space. Association between neurons decreases
during the learning process (the width of the neighborhood function f(n) is forced
to decrease with n preserving large clusters of data while enabling the separation of
clusters that are closely spaced). Ultimately, this training process results in a to-
pology where similarities among data patterns are mapped into similar weights of
the neighboring neurons, and the asymptotic local density of the weights ap-
proaches that of the training set (Ritter and Schulten, 1986).

Following training, the missing (unsampled) or future data values can be esti-
mated based on distances among the available model vectors (Wang, 2003; Kalteh
et al., 2008). In the traditional approach, estimates of values are taken directly
from the prototype vectors of the best matching units (Fessant and Midenet, 2002;
Wang, 2003). Often-times certain training data sets result in biased estimates
(Dickson and Giblin, 2007; Malek et al., 2008) requiring a modified scheme that
incorporates bootstrapping (Breiman,1996), ensemble average (Rallo et al., 2002), or
nearest neighbor (Malek et al., 2008). This study uses an alternative iterative esti-
mation scheme that minimizes the topological error vector (Fessant and Midenet,
2002). The estimation of values (often referred to as imputation) is done simulta-
neously for all SOM variables. For more details about SOM training and estimation,
the reader is referred to (Vesanto, and Alhoniemi, 2000; Kohonen, 2001).

2.2. Model diversity and performance

According to Rallo et al. (2002), one of the elements necessary for accurate SOM
applications is model diversity. Model diversity reflects the incorporation of mea-
surement information characterizing data variables across multiple spatial and
temporal gradients. One means of exploring spatiotemporal relations in environ-
mental studies is to implement a gradient study design. In implementing a gradient

Fig. 1. Self-organizing map learning process. The 2-dimensional grid of neurons is characterized by local coordinates (i,j) and weights wij. During the kth iteration, an input vector
xm is presented to the grid, and the neuron with the smallest distance to the input vector is considered the best matching unit (BMU) vector. The Gaussian neighborhood function
h(i,j,I, r(k)) determines the strength of association among neurons.
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