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a b s t r a c t

Free volume affects many properties of polymers but is relatively difficult to access experimentally.
Several methods of calculating free volume are available, but the assumptions implicit in their use are not
always examined closely. This paper reviews free volume concepts and examines the methods of cal-
culating free volume from first principles, giving particular attention to the history of the frequently used
“1.3” factor quoted from Van Krevelen. Calculating free volume using the “1.3” factor, a method first
proposed by Lee, is shown to be incorrect according to first principles. The error becomes particularly
significant when calculating the free volume of a mixed system, such as a polymer with sorbed gas.
However, the “1.3” factor can still be useful in the absence of certain physical data. A comparison of free
volume calculation techniques is also presented, followed by an evaluation of free volume correlations
with gas permeability and recommendations for future research.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction and history

Occasionally, a method can become so broadly accepted that it
is rarely examined critically. For instance, calculating the space
between polymer chains, termed “free volume,” is routinely per-
formed in the literature. Free volume can have a significant effect
on the properties of any polymer. In polymer membrane separa-
tions, penetrant permeability is thought to be well-correlated with
the free volume of a polymer. Free volume, however, is not easily
accessible experimentally. One route to determining free volume is
to use positron annihilation lifetime spectroscopy [1], which
measures the lifetime of incident positrons in the polymer as they
are annihilated as ortho-positronium. A few other experimental
methods have been used as well with varying success [2,3]. Sev-
eral theoretical models for free volume have been proposed in the
literature, ranging from computational methods to careful treat-
ments of van der Waals volumes [4–9]. One particular calculation
method that has gained wide acceptance among researchers is
that of Lee [10]; this method involves experimentally measuring
the density of the polymer, then subtracting the “occupied volume”
of the polymer chains from the specific volume (the reciprocal of
the density). The specific free volume (SFV) and fractional free
volume (FFV) can be calculated respectively as:

= − ( )SFV V V 10

ρ=
−

= − ( )FFV
V V

V
V1 2

0
0

where V ¼1/ρ is the specific volume and V0 is the occupied vo-
lume of the polymer (or mixed system). Lee indicated that this
occupied volume is the zero point molar volume (i.e., at 0 K),
which is closely related to the van der Waals volume (determined
theoretically via the Bondi group contribution method) with the
following equation:

= ⋅ ( )V V1. 3 3vdw0

A review of the method to calculate the van der Waals volume
of a molecular group is presented elsewhere [11]. Lee's free vo-
lume method has been cited to such an extent since its original
publication in 1980 that the assumptions of the model, especially
the important “1.3” factor, are seldom challenged. Researchers of-
ten use the model without first recognizing its limitations. It is of
considerable interest, then, to understand the developmental
history of this method, how it became widely accepted in the
polymer membrane community, and what adjustments can be
made to improve the first principles basis of free volume
calculations.

In 1972, Van Krevelen published the first edition of Properties of
Polymers [12]. The book's primary purpose was to apply group
contribution techniques to prediction of polymer properties when
experimental data were unavailable. Chapter 4 addresses predic-
tion of volumetric properties, which are important for numerous
phenomena and processes. Van Krevelen expanded upon the
contribution of Bondi [13,14] to compile group contributions of
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various structural groups to the van der Waals volume of a poly-
mer. He stated that the zero point molar volume, denoted as V0(0),
is closely related to the van der Waals volume and adduced that,
“According to Bondi [14], a good approximation is given by the
following expression”:
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Other than crediting Bondi, Van Krevelen does not explain the
origin or physical meaning of the “1.3” factor.

As previously mentioned, Lee was the first to suggest applying
the relationship found in Van Krevelen to calculate free volume
[10]. In his 1980 publication, Lee, like Van Krevelen, credits Bondi
with introducing the “1.3” factor to relate the van der Waals and
occupied volume without explaining its origin or physical mean-
ing, even using the same language of Van Krevelen when calling it
a “good approximation.” Despite this novel merger of group con-
tribution methods and free volume theory, it remained relatively
obscure for some time. Between 1980 and 1984, Lee's paper was
cited only once [15].

In the mid-1980s, Yasushi Maeda, advised by Professor Don
Paul, applied Lee's method to the study of gas permeability in pure
polymers and polymer blends [16]. In 1984, Lee received his first
journal citation in three years in a review article by Paul [17]. Paul
did not discuss the “1.3” factor in the paper, but rather commented
on the impressive correlation Lee's relationship had with experi-
mental data. Maeda's dissertation in 1985 [16] and subsequent
paper [18] reintroduced Lee's innovative idea to the literature. Like
Lee and Van Krevelen, Maeda's paper credited Bondi with the “1.3”
factor but did not elaborate upon its origin and physical meaning
in any detail. Interestingly, though Maeda essentially brought Lee's
paper back from obscurity, Maeda is less frequently credited with
the rediscovery and expanded application. As of January 2016,
Lee's paper has accumulated well over 300 citations, while Mae-
da's 1987 paper has been cited just over 160 times. Nonetheless,
the “1.3” factor has been quoted enough that it is essentially ac-
cepted without question.

2. Revising the method of Lee, Maeda, and Van Krevelen

All of the major sources of this method of calculating free volume
credit Bondi as the originator of the “1.3” factor. Generally, these
sources cite Chapters 3 and 4 of Bondi's Physical Properties of Mole-
cular Crystals, Liquids, and Glasses [14]. However, Bondi did not focus
on free volume. His primary goal was to establish corresponding
states relationships for property predictions of all kinds of molecules.
Current researchers still cite the “1.3” factor as “following Bondi” in
many papers. However, finding this factor anywhere in Bondi's book
is impossible. In fact, we find in Bondi a slightly different presenta-
tion of the terms: “An obvious fundamental property of a crystal is
ρ ρ* = = *V V/vdw0 0 at T¼0 K, the packing density in the absence of
thermal vibrations.” The zero-point packing density (sometimes
called the packing fraction) is always less than unity. Physically, the
“1.3” factor must be interpreted as the reciprocal of the packing
density of a polymer crystal at 0 K.

Van Krevelen's fundamental assumption, though not explicitly
stated, is that all polymers have the same packing density, 1/
1.3¼0.77, at absolute zero. Perhaps what Van Krevelen found in
Bondi was a packing density of �0.77 for polymers. Still, no direct
reference to such a universal packing density for polymers exists
in the text. One cannot even average the packing densities of select
polymers given in Table 4.8 or any small molecules from tables
throughout Chapters 3 and 4 of Bondi's book [14] to obtain such a
value, which range from 0.606 for poly-4-methyl-1-pentene to the

greatest value given of 0.775 for poly(vinylidene chloride). Though
the packing density of poly(vinylidene chloride) is indeed the re-
ciprocal of 1.3, it seems unlikely that Van Krevelen would take this
single polymer as representative of all polymers when many
others were listed as well. Sanchez and Cho [19] have suggested
that the “1.3” value perhaps originated from extrapolations of the
packing density of polyethylene to absolute zero using data pro-
vided by Biltz [20] and Bondi, but this also seems unlikely con-
sidering that the packing density of polyethylene is given as 0.732
in Bondi's Table 4.8 and no data for polymers are provided in
Biltz's 1934 book. Sugden's work on molecular volumes at absolute
zero, mentioned by Van Krevelen, is insightful but does not pro-
vide sufficient evidence to support the “1.3” assumption [21]. In-
cidentally, Askadskii contends for a universal packing density for
polymers of 0.681 (“to a first approximation”) and this further
weakens Van Krevelen's assumption [9].

However, a single sentence at the beginning of Chapter 3 of
Bondi may point to how Van Krevelen developed his method:
“[The packing density] can vary in principle… from 0.785 to 0.903
for open- and close-packed arrays, respectively, of infinitely long
cylinders.” Polymer chains could possibly be approximated as
“infinitely long cylinders,” and many polymer crystals form open-
packed arrays [22]. It could be that Van Krevelen took the value of
0.785 from this section to make his approximation, 1/0.785¼1.273,
and then rounded the result to obtain the “1.3” factor.

When calculating the molar density at 0 K, or zero point molar
volume, for a material with an unknown packing density ρ*, Bondi
suggests guessing a value by comparison with ρ* data from ma-
terials believed to have a similar crystal structure to the material of
interest. The occupied volume of the molecule then becomes:

)( ρ= * ⋅ ( )V V1/ 5vdw0

This adjustment to Lee's method is particularly useful when
calculating free volume of a mixed system of a polymer and a
small molecule, and has been demonstrated in previous work with
polymer/CO2 mixed systems [23]. The packing densities of many
small molecules are well-known and presented in various tables in
Bondi's book and elsewhere [13,14], ranging from 0.56 for F2 to
0.766 for S8. (Bondi notes that packing densities less than 0.6 are
rather rare.) Calculating the occupied volume of a mixed system
involves accounting for the contributions of each component with
a simple mixing rule. For instance, the occupied volume of a
polymer/CO2 system becomes:

∑= = +( − ) ( )V wV w V w V1 6mix j j CO CO CO p0, 0, 0, 0,2 2 2

where wj and V0,j are the weight fraction and occupied volume
of component j in the mixed system, respectively.

Others have proposed alternative methods of calculating oc-
cupied volume. Sanchez and Cho [19] suggested that a more ap-
propriate measure of V0 was the specific volume at absolute zero,
i.e., V0¼v0K¼1/ρ0K. They noticed that the zero pressure density of
many polymers is linear with temperature (so long as the polymer
is at equilibrium), and that the characteristic mass density, ρ0K, can
be obtained by extrapolating zero pressure densities to absolute
zero. A particularly interesting result of their analysis is that
fractional free volume is not only related to the characteristic mass
density but also to the characteristic temperature T*:

ρ
ρ

ρ= − = − ̃ = * = ̃
( )
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T
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where ρ ̃ and ̃T are the reduced density and the reduced tem-
perature, respectively.

Consequently, one does not necessarily need to calculate the
van der Waals volume in order to estimate free volume. In fact, no
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