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Triple collocation (TC) can be used to validate observations of a continuous geophysical target variable when the
error-free true value is not known.However, aswe show in this study, naïve application of TC to categorical target
variables results in biased error estimates. The bias occurs because the categorical variable is usually bounded,
introducing correlations between the errors and the truth, violating TC's assumptions. We introduce Categorical
Triple Collocation (CTC), a variant of TC that relaxes these assumptions and may be applied to categorical target
variables. The method estimates the rankings of the three measurement systems for each category with respect
to their balanced accuracies (a binary-variable performance metric). As an example application, we estimate
performance rankings of landscape freeze/thaw (FT) observations derived from model soil temperatures, in-
situ station air temperatures and satellite-observed microwave brightness temperatures in Alberta and
Saskatchewan, Canada. While rankings vary spatially, in most locations the model-based FT product is ranked
the highest, followed by the satellite product and the in-situ air temperature product. These rankings are likely
due to a combination of differences in measurement errors between FT products, and differences in scale. They
illustrate the value in using a suite of different measurements as part of satellite FT validation, rather than simply
treating in-situ measurements as an error-free ‘truth’.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Categorical variables belong to one of a set of exhaustive, mutually-
exclusive categories, whichmay be ordered (in which case, the categor-
ical variable is ‘ordinal’) or unordered (‘nominal’). Formany geophysical
variables, it is convenient to consider the variable to be categorical
rather than continuous. Examples include land cover type (Friedl
et al., 2002), cloud presence/absence (Ackerman et al., 1998), wildfire
burned area status (Roy, Boschetti, Justice, & Ju, 2008) and landslide
occurrence (Metternicht, Hurni, & Gogu, 2005). Models, satellites and
in-situ observations (or “measurement systems”) are used to monitor
and understand these variables, but each system contains its own
errors. A common question is: which system has the best performance
ranking with respect to an appropriate validation metric (Entekhabi,
Reichle, Koster, & Crow, 2010)?

One measurement system is usually assumed a priori to be the
error-free “truth” system, with other systems judged in comparison.
However, the presence of inevitable errors in the “truth” system, along

with differences in support scale between systems, often make the
performance rankings dependent on the choice of the “truth” system,
an unsatisfactory outcome. Triple collocation (TC) is a technique
for estimating the root-mean-squared-errors (Stoffelen, 1998) and cor-
relation coefficients (McColl, Vogelzang, et al., 2014) of three measure-
ment systems with respect to the unknown true value of a continuous
target variable, without unrealistically treating any one system as
error-free. It has been used for estimating errors in measurements of a
wide range of continuous geophysical target variables, including sea
surface temperature (e.g., O’Carroll, Eyre, & Saunders, 2008), wind
speed and stress (e.g., Vogelzang, Stoffelen, Verhoef, & Figa-Saldaña,
2011), wave height (e.g., Janssen, Abdalla, Hersbach, & Bidlot, 2007),
precipitation (Alemohammad, McColl, Konings, Entekhabi, & Stoffelen,
2015; Roebeling, Wolters, Meirink, & Leijnse, 2012), fraction of
absorbed photosynthetically active radiation (D’Odorico et al., 2014),
leaf area index (Fang, Wei, Jiang, & Scipal, 2012) and soil moisture
(e.g., Draper et al., 2013; Miralles, Crow, & Cosh, 2010).

Applying triple collocation to categorical target variables, however,
poses unique challenges. Problems arise because categorical variables
are usually unordered and bounded. As we show in Section 2, these
differences mean that key assumptions in TC are violated, biasing TC
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error estimates. In Section 3, we describe a new approach – extending
thework of Parisi, Strino, Nadler, and Kluger (2014) – called Categorical
Triple Collocation (CTC) that relaxes the violated assumptions and
provides performance rankings for measurements of categorical vari-
ables. In Sections 4 and 5, we demonstrate its utility by applying it to
the problem of ranking the performances of model, in-situ and satellite
estimates of landscape freeze/thaw (FT) state.

2. Deficiencies of classical TC

Triple collocation is a commonly used technique for estimating the
mean-squared error MSE (Stoffelen, 1998) and correlation coefficient
r (McColl, Vogelzang, et al., 2014) of a measurement or model estimate
with respect to the unknown true value of the target variable. It requires
observations of the target variable from three collocated measurement
systems that are linearly related to the target variable. The error
model is given by

Xi ¼ αi þ βiT þ εi ð1Þ

where Xi (for i=1,2,3) are the observedmeasurements from the noisy
measurement systems, T is the unknown true value of the target
variable, εi is a zero-mean random error term and αi ,βi are calibration
parameters. Xi ,εi and T are all random variables. It is further assumed
that Var(εi) and Var(T) are fixed and do not vary in time. The same
assumption is not strictly required for E(T), although many TC studies
use climatological anomalies so that E(T) is approximately stationary.
The three measurement systems used in the analysis could be, for
example, a satellite retrieval, a model estimate and an in-situ observa-
tion of the target variable. To apply triple collocation, two additional
assumptions must be satisfied:

(R1) the random errors between different measurement systems
must be uncorrelated with each other (i.e., Cov(εi,εj)=0, i≠ j).
(R2) the random errors must not be state-dependent and must be
uncorrelated with the target variable (i.e., Cov(εi,T)=0).

Classical TC suffers from several deficiencies when applied to
categorical variables, arising from the facts that they may be unordered
and/or strongly bounded. First, the additive, zero-mean error model
implicitly imposes an ordering and is inappropriate for nominal
(i.e., unordered) categorical variables. Second, even if we only consider
ordinal (i.e., ordered) variables, the distribution of εi must depend on T
to ensure that Xi does not take on values outside the bounded domain.
This dependence violates (R2) and becomes more significant as
the number of possible values the categorical variable may take
on (i.e., the size of its support) decreases. Consider the case of
binary variables, which only have two elements in their support
(i.e., Xi ,T∈ {−1,1}). As shown in Appendix A, this limited support
induces non-negligible correlations between the errors and target
variable such that (R1) and (R2) are always strongly violated for the
binary case. In particular, defining Pi to be the probability of an error
occurring in measurement system i, we have

Cov εi; Tð Þ ¼ −2Pi ð2Þ

Cov εi; ε j
� � ¼ 4PiP jVar Tð Þ ð3Þ

which are non-zero for all non-trivial cases where PiN0 ,PjN0 and
Var(T)N0. The observation that Cov(εi,T)b0 for categorical data has
been widely noted in the econometrics literature in terms of ‘mean
reversion’: errors tend to be biased towards the mean (e.g., Kapteyn &
Ypma, 2007). The correlation between the errors and the truth then
induces correlations between errors in the different measurement sys-
tems. These violations of (R1) and (R2) result in biased triple collocation
error estimates.

3. Triple collocation for categorical variables

The flaws in classical TC when applied to categorical variables
motivate the development of a new approach that uses an error
model appropriate for unordered variables, and allows the errors and
truth to be correlated. In this section, we will introduce a variant of TC
for categorical variables that estimates performance rankings of three
measurement systems with respect to a binary validation metric, the
“balanced accuracy”

π ¼ 1
2

ψþ ηð Þ ð4Þ

where ψ is the measurement system sensitivity (i.e., the probability of
the measurement being correct when the truth T = 1) and η is the
measurement system specificity (i.e., the probability of the measure-
ment being correct when T = −1). Unlike the simple accuracy metric
μ (i.e., the probability of the measurement being correct over all
cases), π avoids overestimating the quality of performance of biased
classifiers on imbalanced datasets (E(T)≠0), while still reducing to μ
for balanced datasets. For example, consider a binary classifier which
is biased, in that it always returns a classification of 1. If T is almost
always 1, the biased classifier may still receive a high simple accuracy,
even though it has no real predictive skill. In contrast, the balanced
accuracy will more heavily penalize the classifier for the rare occur-
rences where T=−1 and the classification is incorrect. It is impossible
to derive the actual balanced accuracy for each measurement
system but, as will be shown, our approach allows calculation of a
quantity that is proportional to the balanced accuracy for eachmeasure-
ment system. The relative sizes of this quantity between the three
measurement systems can be used to determine relative performance
rankings.

To handle unordered variables, instead of the linear regression
framework adopted in classical TC, we use a classification frame-
work. For each measurement system i and category k, define a binary
classifier

Xk
i Tk
� �

¼ Tk þ εki ð5Þ

where

Tk ¼ 1; if the true value belongs to class k
−1; otherwise

�
ð6Þ

and

Xk
i ¼

1; if the measured value belongs to class k
−1; otherwise

�
ð7Þ

with ε ik∈{−2,0,2}, and dependent on the value of Tk to ensure that Xi
k

does not take on a value outside the set {−1,1}.Wemay then assess the
performance of the measurement system separately for each category.
For instance, saywe are validating a landcover type categorical variable,
with the categories ‘grassland’, ‘forest’, ‘desert’ and ‘other’. We can treat
this as four different binary classification problems: ‘grassland’ vs ‘not
grassland’, ‘forest’ vs ‘not forest’, ‘desert’ vs ‘not desert’ and ‘other’ vs
‘not other’. Thiswill result in four separate rankings for the four different
categories. As a consequence, for example, the measurement system
that is ranked the highest for ‘grassland’ may be ranked the lowest for
‘desert’. There is no single, obviousway to combine these different rank-
ings into a single ranking across categories. This is a general problem
common to all categorical classification techniques. Hence, the problem
of validating general categorical variables reduces to that of validating
binary variables; we now drop the k superscript in our notation for
convenience.
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