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Forest inventory and monitoring programs are needed to provide timely, spatially complete (i.e. mapped), and
verifiable information to support forest management, policy formulation, and reporting obligations. Satellite
images, in particular data from the Landsat Thematic Mapper and Enhanced Thematic Mapper (TM/ETM+)
sensors, are often integrated with field plots from forest inventory programs, leveraging the complete spatial
coverage of imagery with detailed ecological information from a sample of plots to spatially model forest
conditions and resources. However, in remote and unmanaged areas such as Canada's northern forests, financial
and logistic constraints can severely limit the availability of inventory plot data. Additionally, Landsat spectral
information has known limitations for characterizing vertical vegetation structure and biomass; while clouds,
snow, and short growing seasons can limit development of large area image mosaics that are spectrally and
phenologically consistent across space and time. In this study we predict and map forest structure and
aboveground biomass over 37 million ha of forestland in Saskatchewan, Canada. We utilize lidar
plots—observations of forest structure collected from airborne discrete-return lidar transects acquired in
2010—as a surrogate for traditional field and photo plots.Mapped explanatory data included Tasseled Cap indices
and multi-temporal change metrics derived from Landsat TM/ETM+ pixel-based image composites. Maps of
forest structure and total aboveground biomass were created using a Random Forest (RF) implementation of
Nearest Neighbor (NN) imputation. The imputation model had moderate to high plot-level accuracy across all
forest attributes (R2 values of 0.42–0.69), as well as reasonable attribute predictions and error estimates (for
example, canopy cover above 2 m on validation plots averaged 35.77%, with an RMSE of 13.45%, while
unsystematic and systematic agreement coefficients (ACuns and ACsys) had values of 0.63 and 0.97 respectively).
Additionally, forest attributes displayed consistent trends in relation to the time since andmagnitude ofwildfires,
indicating model predictions captured the dominant ecological patterns and processes in these forests.
Acknowledging methodological and conceptual challenges based upon the use of lidar plots from transects,
this study demonstrates that using lidar plots and pixel compositing in imputation mapping can provide forest
inventory and monitoring information for regions lacking ongoing or up-to-date field data collection programs.
Crown Copyright © 2016 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Forests cover approximately 31% of global land surface area (FAO,
2010), providing critical ecosystem services such as wood products,
wildlife habitat, biodiversity, and regulation of the earth's biogeochem-
ical cycles (Daily, 1997; Millennium Ecosystem Assessment, 2005). In
Canada, forests cover over 400 million ha, representing more than 53%
of Canada's land area and accounting for approximately 10% of global
forest cover (Natural Resources Canada, 2014). Canada's forests make
significant contributions to global bio-geochemical cycles and provide
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a wide array of other ecosystem services (Natural Resources Canada,
2014). Sustainablemanagement and conservation of forests tomaintain
these services requires consideration of a wide array of ecological,
economic, and societal values. To inform these needs, comprehensive
inventory and monitoring systems are required to provide timely, spa-
tially complete (i.e.mapped), and verifiable information on forest struc-
ture (i.e. canopy cover, stand height, and stem volume), biomass, and
carbon pools.

Inventory andmonitoring of forest conditions (i.e. structure, compo-
sition, biomass, and carbon) are often conducted by National Forest In-
ventory programs that rely upon plot-based field sampling (Tomppo
et al., 2010). Measurements from field inventory plots include highly
detailed information about forest vegetation composition and structure,
fromwhich sample-based estimates of forest conditions can be calculat-
ed. Information from inventory plots and other long-termplot networks
can be used to develop and calibrate growth and yield equations (Smith,
Bell, Herman, & See, 1984; Lessard, McRoberts, & Holdaway, 2001;
Lacerte, Larocque, Woods, Parton, & Penner, 2006), and facilitate the
calibration and validation of remotely sensed estimates of forest inven-
tory attributes (Smith, 2002; Wulder, Kurz, & Gillis, 2004). The re-
measurement of permanent sample plots in a forest inventory cycle
can also provide critical information for change monitoring (Poso,
2006; Woodbury, Smith, & Heath, 2007; Herold et al., 2011; Moeur
et al., 2011). Despite their widespread use, lack of spatial coverage and
lengthy re-measurement intervals can limit the effectiveness of field
plots in quantifying forest change, especially in remote and/or unman-
aged forests that often have greatly reduced or non-existentfield inven-
tory data (Wulder et al., 2004). To accommodate the difficulty and
expense in collecting ground plots, photo plots are often used as a sub-
stitute forfield plots, aswell as for stratification purposes inmulti-phase
plot-based inventory programs (Bechtold & Patterson, 2005; Gillis,
Omule, & Brierley, 2005). Photo plots provide an opportunity for imple-
mentation of a sample-based inventory upon similar statistical under-
pinnings as plot-based programs. Large area representation is
possible with photo plots (Nielsen, Aldred, & MacLeod, 1979;
Magnussen & Russo, 2012); however complete spatial coverage is
lacking. Furthermore, establishing and measuring photo plots typi-
cally requires purpose collected imagery, which in combination
with expert interpretation and the need for some level of supporting
field plot data, can substantially increase costs in remote and unman-
aged forests.

As a complementary approach to field and photo-based inventories,
satellite imagery can provide spatially complete information about for-
ests across large areas. Regional and global maps of forest cover and
change over time have long been derived from multispectral satellite
imagery (Woodcock et al., 1994; Cohen, Maiersperger, Spies, & Oetter,
2001; Hansen et al., 2003, 2013. Hermosilla, Wulder, White, Coops, &
Hobart, 2015a). In particular, Landsat TM/ETM+ imagery is widely
used for forest mapping because of its free and open data policy, global
coverage, long temporal record, large scene-sizes, and spectral and spa-
tial resolutions compatible with characterizing vegetation conditions
and dynamics (Cohen & Goward, 2004; Woodcock et al., 2008;
Wulder, Masek, Cohen, Loveland, & Woodcock, 2012a; Kennedy et al.,
2014). Regional and national forest inventory programs increasingly in-
tegrate satellite imagery with inventory plots, leveraging the detailed
forest conditions provided by sampled field or photo plots with com-
plete spatial coverage provided by satellite imagery to generate spatial
predictions (e.g. maps) of forest conditions (Ohmann & Gregory,
2002; Tomppo et al., 2008; Wilson, Woodall, & Griffith, 2013;
Beaudoin et al., 2014). As one possible approach, nearest neighbor
(NN) imputation methods are widely used in plot/imagery integration.
Imputation methods fill in observations that are missing for some re-
cords (Y-variables), using related variables that are available for all re-
cords (X-variables). In forest mapping applications, Y-variables are
usuallymeasures of forest composition or structure derived froma sam-
ple of field or photo plots, while mapped X-variables can include

multispectral satellite imagery and other spatially complete datasets
(i.e. climate, topography). Regression approaches predict new Y-
variables when they are missing, but can distort marginal distributions
and covariation between Y-variables. In contrast, imputation is a meth-
od for filling inmissing data by substituting values from donor observa-
tions with the underlying assumption that two locations with similar
values of X-variables should be similar with respect to Y-variables. A
major strength of imputation approaches is these donor-basedmethods
are multivariate, non-parametric, and distribution-free (Eskelson et al.,
2009).

Common across large scale imputation mapping projects is the use
of satellite imagery as explanatory variables (X-variables). The recent
availability of cost-free Landsat images in a consistent, analysis-ready,
and easy-to-use format has facilitated a conceptual shift in how Landsat
imagery is used in ecosystem inventory, mapping, monitoring (Wulder
et al., 2012a; Kennedy et al., 2014). Advances in pixel-based image
composting and change detection using the Landsat time series (LTS)
can be especially important for improving the accuracy of forest maps
and partially overcoming passive optical imagery limitations. Pixel-
based image compositing methods are applied to the Landsat archive
to generate cloud-free, radiometrically and phenologically consistent
image composites that are spatially contiguous over large areas (Roy
et al., 2010; Hansen & Loveland, 2012; Griffiths, van der Linden,
Kuemmerle, & Hostert, 2013; White et al., 2014). LTS change detection
methods provide pixel-level characterization of forest disturbance,
recovery, and other trends (Masek et al., 2008; Huang et al., 2010;
Kennedy, Yang, & Cohen, 2010; Hermosilla et al., 2015a). Pixel-based
image composites are invaluable for image/plot integration when min-
imization of year-to-year spectral variability and seamless multi-scene
image mosaics are needed to relate to plot data collected across large
spatial extents or multiple years (Ohmann et al., 2012). By quantifying
disturbance, recovery, and trends, LTS change metrics can improve
and partially overcome Landsat limitations in predicting forest vege-
tation structure (Lu, 2006), because they characterize temporal
changes associated with forest processes of mortality, succession,
and growth (Pflugmacher, Cohen, & Kennedy, 2012; Zald et al.,
2014), and facilitate predictions of forest biomass dynamics over
time (Powell et al., 2010; Main-Knorn et al., 2013; Pflugmacher,
Cohen, Kennedy, & Yang, 2014).

A more practical approach for large scale inventory in remote
areas may be to improve maps of forest attributes using remotely
sensed information on vegetation structure. Airborne light detection
and ranging (lidar) can provide detailed three-dimensional structure
of forest canopies, and has been widely used to characterize forest
cover and structure (see reviews by Dubayah & Drake, 2000;
Lefsky, Cohen, Parker, & Harding, 2002; Reutebuch, Andersen, &
McGaughey, 2005), been integrated with plot-based samples of for-
est conditions to accurately map forest structure (Hudak, Crookston,
Evans, Hall, & Falkowski, 2008; Falkowski et al., 2010; Zald et al.,
2014), and used to update forest inventory data (Hilker, Wulder, &
Coops, 2008). Declining costs have made lidar acquisitions possible
for increasingly large areas; yet complete, single-year wall-to-wall
lidar coverage for large areas is still costly and logistically prohibitive
for many regional and national forest inventory programs. As a re-
sult, the use of lidar in mapping forest conditions is often constrained
to sub regional extents (Hudak et al., 2008; Falkowski et al., 2010;
Zald et al., 2014), or as a component of multi-phase sampling proce-
dures in larger landscapes (Andersen, Strunk, Temesgen, Atwood, &
Winterberger, 2012; Strunk, Temesgen, Andersen, & Packalen,
2014). Alternatively, sample based “lidar plots” may provide de-
tailed, spatially discrete information about vegetation structure,
similar to field plots in areas without sufficient field inventory data
(Wulder et al., 2012b).

In this paper, we build upon the potential synergies of the Landsat
times series and lidar observations to predictively map forest structure
(i.e. canopy cover, stand height, basal area, etc.) and aboveground
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