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Automating the accurate classification of water in Landsat imagery will benefit many researchers conducting
large-area multi-temporal analyses of the USGS archive. We propose that water index methods based on data
normalised to surface reflectance, using thresholds optimised for a large selection of data, provide a simple yet
accurate method for automated water classification across large regions. In order to select the best index for
this task a comprehensive comparative analyses was required. We assessed the accuracy of seven water index
methods for classifying water in 30 m resolution Landsat TM/ETM+/OLI imagery from eastern Australia. These
indexes were the Automated Water Extraction Index for images with shadows (AWEIshadow) and without
shadows (AWEIno shadow), tasselled cap wetness (TCWCrist), two variations of the normalised difference water
index (NDWIMcFeeters and NDWIXu), a water index created using canonical variates analysis from top-of-
atmosphere data (WI2006), and a newwater index created with linear discriminant analysis from data processed
to surface reflectance (WI2015). Awide variety of water (50,868), non-water (36,833) andmixed (16,499) valida-
tion pixels were selected from Landsat images across the states of New SouthWales and Queensland.Water area
and the colour of water and non-water features were determined for each validation pixel using coincident high
resolution imagery and TM/ETM+ reflectance. A single optimum threshold for classifying each index into water
and non-water was determined using pure pixels. In general the WI2015, WI2006 and AWEIshadow performed the
best, with all indexes achieving overall accuracies of 95–99% for pure pixels, and 73–75% for mixed pixels. Omis-
sion errors were more common than commission errors, and water area was usually underestimated, especially
where water was green-brown in colour, and/or where water bodies were small or had long perimeters with
manymixed pixels. The accuracy of each indexwas highly dependent on the composition of the validation pixels,
with no index performing best across all water and non-water pixel types. All indexes and thresholdswere found
to perform consistently across images from the TM, ETM+ and OLI sensors, facilitating the automated classifica-
tion of water to similar levels of accuracy for the growing archive of Landsat data.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Background

Automating the classification of surface water in satellite imagery is
often required tomask water pixels to allow the effective monitoring of
the land surface. For example, when analysing a time-series of satellite
derived vegetation cover, water pixels that are not masked will cause
spurious temporary reductions in cover that will confound analysis

and interpretation. Water masks can also be used for analysing the
changing distribution of water across large areas, complementing
other research into surfacewater dynamics. Multi-spectral 30m resolu-
tion imagery from the Landsat satellites has been captured worldwide,
approximately every 16 days for the last 30 years. Although surface
water movement can be very rapid, changing dramatically between
Landsat acquisitions, the data represent an important long-term,
large-area, multi-temporal reference for land and water monitoring.

Several studies have classified water in Landsat 5 Thematic Mapper
(TM) and Landsat 7 Enhanced Thematic Mapper (ETM+) imagery,
often using the normalised difference water index (NDWIMcFeeters) of
McFeeters (1996), or the NDWIXu of Xu (2006) (Duan & Bastiaanssen,
2013; Hui et al., 2008; Murray et al., 2012). These indexes are simple
to calculate, each only using two input bands. The water index devel-
oped by Danaher and Collett (2006) (referred to here as the WI2006)
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combines five bands, was developed for ETM+ data from Queensland,
Australia, and is routinely used to mask water pixels across Australia
by the government organisations that are partners in the Joint Remote
Sensing Research Programme (JRSRP). Tasselled cap transformations
of Landsat TM/ETM+ data (Crist, 1985; Crist & Cicone, 1984; Huang
et al., 2002) have also been used tomapwater. They summarise Landsat
data into fewer fundamental views, by rotating pixel vectors in multidi-
mensional space, using all bands. The third fundamental view of the
Landsat TM/ETM+ tasselled cap transformation relates to wetness,
and tasselled cap wetness (TCW) has been used as an input into water
classification schemes (Bhagat & Sonawane, 2011; Ouma & Tateishi,
2006). Feyisa et al. (2014) recently proposed the Automatic Water Ex-
traction Index, which is actually two indexes: one for images with no
shadow (AWEIno shadow) and another for those with shadows from
mountains, buildings and clouds (AWEIsh). These indexes use four and
five bands respectively.

All the water indexes described above allow water pixels to be clas-
sified by applying a simple threshold, which can be adjusted for differ-
ent images or different classification priorities. We propose that if
imagery is processed to surface reflectance a simple global threshold
can be selected, allowing automated classification of water pixels across
images from different places and times. This was observed by Feyisa
et al. (2014), who found little variation in optimum index thresholds
across five images processed to surface reflectance. Accurate automated
water classification of themulti-temporal global Landsat archive would
facilitate analysis of the changing distribution of water, showing where
water is permanent or temporary, and allowing research into the long
term trends of water extent. This would complement static global
water maps that have to date only represented the period circa-2000,
such as the global water bodies database (GLOWABO) of Verpoorter
et al. (2014) and the global inland water body map (GIW) of Feng
et al. (2015). The water classification algorithms developed for these
maps used decision trees and various indexes derived from Landsat
data, andwere specifically designed for a dataset of circa-2000 imagery.
Further research would be required before the methods could be ap-
plied to Landsat images from different dates. The GLOWABO algorithm
as described by Verpoorter et al. (2012) is not reproducible, and the
GIW algorithm requires the 250 m resolution water mask derived
from Moderate-resolution Imaging Spectroradiometer (MODIS) data
and the Shuttle Radar Topography Mission (SRTM) digital elevation
model (DEM). Feng et al. (2015) also acknowledges that the GIW map
does not capture the temporal variability inwater extent due to season-
al and extreme events. Simple water index methods however, based on
Landsat data normalised to surface reflectance and an optimised thresh-
old, allow dynamic water extent maps to be produced from the Landsat
archive, particularly when combined with other automated products
such as cloud masks. However, we are unaware of any comprehensive
comparative analyses of the water indexes, showing their strengths
andweaknesses, so it is difficult to choose the best index for automated,
large-area, multi-temporal water classification. The work presented
here was designed to allow this decision to be made for eastern
Australia, and to demonstrate how similar research could be performed
on other large regions, or even the globe.

1.2. The interaction of solar radiation and water

Each water index combines the information from TM/ETM+ bands,
with the goal of separating water and non-water pixels in a single di-
mension, allowing water pixels to be classified through selecting a
threshold. All water indexes exploit the main physical characteristic of
water in satellite imagery: a decrease in reflectance from the visible to
infrared wavelengths. Solar radiation interacts with water in several
ways, such as reflecting and scattering at the surface, while some radia-
tion will penetrate the water column before experiencing subsurface
scattering and attenuation. Attenuation of light in clear water is depen-
dent on wavelength, with blue light penetrating the furthest and

attenuation increasing with increasing wavelength (Jerlov, 1976;
Smith & Baker, 1981). Penetration is dependent on the attenuation coef-
ficient for pure water, the scattering and absorption coefficients for par-
ticles, and the absorption coefficient for dissolved organic material
(Smith & Baker, 1981). Attenuation shows an exponential increase
from visible to near infrared (NIR) wavelengths (Pope & Fry, 1997;
Smith & Baker, 1981), while for longer wavelengths water absorption
is so great that any reflectance is due to scattering and reflection at
the water surface (Martin, 2004). Dissolved organic material (primarily
acids from decaying vegetable matter in land runoff and the degrada-
tion of phytoplankton), organic particulates (phytoplankton and zoo
plankton cell fragments and faecal pellets) and inorganic particulates
(products of land erosion) all absorb strongly in blue wavelengths giv-
ing water a brownish yellow colour (Martin, 2004). Absorption con-
tinues into green wavelengths for some dissolved and particulate
matter, while the chlorophyll present in phytoplankton absorbs in red
wavelengths (Matthews, 2011). Water with high phytoplankton bio-
mass may also have greater reflectance in NIR wavelengths, due to in-
creased scattering (Blondeau-Patissier et al., 2014; Gitelson et al.,
1999). One major difficulty in classifying water in remotely sensed im-
agery is the variability of reflectance spectra of water with different
properties. Although a great deal of research has been conducted into
the remote sensing of water properties, these studies were not con-
cerned with the detection of water but focused on sites of known
water. Research into water detection meanwhile, has occasionally
taken different water colours into account (Sun et al., 2012) but has
not quantitatively assessed their detection.

Some examples of reflectance from water pixels in Landsat TM/
ETM+ images are shown in Fig. 1. For deep-clear ocean water, reflec-
tance in the visible bands decreases exponentially with increasing
wavelength, then flattens in the infrared (Fig. 1A). Greater levels of dis-
solved and particulate material decrease reflectance in blue wave-
lengths, but if the water is relatively clear and deep, the overall trend
of decreasing or flat reflectance is the same (Fig. 1B). Dark-green
(Fig. 1C) and green (Fig. 1D) water bodies with high concentrations of
phytoplankton have reflectance peaks in the green band, while brown
(Fig. 1F) and dark-brown (Fig. 1G) water bodies with high concentra-
tions of sediment have peaks in the red band. Water with a mixture of
phytoplankton and sediment appears a green-brown colour, and reflec-
tance in the green and red bands are similar (Fig. 1E). Clear shallow
water where the substrate contributes to the reflectance is the most
complicated case, and can result in a variety of colours depending on
the depth of the water and the substrate type. Despite this variability,
water has relatively unique reflectance properties, although some
dark features with low reflectance can appear similar. Shadows cast
by cloud (Fig. 1K), steep topography (Fig. 1L), deep quarries (Fig. 1M),
and tall buildings (Fig. 1N) can appear similar to water. Bare ground ap-
pears different to water due to high reflectance in the infrared (Fig. 1H),
while vegetation appears different due to a peak in near-infrared reflec-
tance (Fig. 1I-J).

1.3. Objectives

The research had three main objectives. Firstly, to generate a new
Landsat water index (WI2015) based on input data processed to surface
reflectance. Although the WI2006 has been used operationally for land
cover and wetland mapping across eastern Australia for more than
10 years, it is based on standardised top-of-atmosphere (TOA) reflec-
tance data. Our hypothesis was that an updated water index developed
from surface reflectance data would be more accurate. The second ob-
jective was to compare the accuracy of the various index methods in
classifying water with a range of properties from validation sites across
NewSouthWales (NSW) andQueensland in easternAustralia. The third
objective was to test the applicability of the indexes across data from
Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 Operational Land Imager
(OLI).
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