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a b s t r a c t

Hot weather increases risk of mortality. Previous studies used different sets of weather variables to
characterize heat stress, resulting in variation in heat–mortality associations depending on the metric
used. We employed a statistical learning method – random forests – to examine which of the various
weather variables had the greatest impact on heat-related mortality. We compiled a summertime daily
weather and mortality counts dataset from four U.S. cities (Chicago, IL; Detroit, MI; Philadelphia, PA; and
Phoenix, AZ) from 1998 to 2006. A variety of weather variables were ranked in predicting deviation from
typical daily all-cause and cause-specific death counts. Ranks of weather variables varied with city and
health outcome. Apparent temperature appeared to be the most important predictor of heat-related
mortality for all-cause mortality. Absolute humidity was, on average, most frequently selected as one of
the top variables for all-cause mortality and seven cause-specific mortality categories. Our analysis
affirms that apparent temperature is a reasonable variable for activating heat alerts and warnings, which
are commonly based on predictions of total mortality in next few days. Additionally, absolute humidity
should be included in future heat-health studies. Finally, random forests can be used to guide the choice
of weather variables in heat epidemiology studies.

& 2014 Elsevier Inc. All rights reserved.

1. Introduction

Heat waves are projected to occur more frequently, more
intensely and to last longer as a consequence of climate change
(Meehl and Tebaldi, 2004). Epidemiological studies have shown
that heat waves are associated with elevated risk of mortality,
hospital admissions, heat stroke, heat exhaustion, cardiovascular
and respiratory diseases (Kovats and Hajat, 2007). Previous heat-
related epidemiological studies have characterized heat or heat
waves by using a single temperature metric (e.g., daily mean/
minimum/maximum temperature), or a composite index combin-
ing temperature and relative humidity, or a more sophisticated
index requiring substantial meteorological knowledge (e.g., spatial
synoptic classification) (Hajat et al., 2010; Barnett et al., 2010).
However, these weather metrics may not characterize human
exposures to extreme heat very well since biometeorological
studies have shown that human body temperature is related to
many weather variables, e.g., temperature, relative humidity, solar
radiation, barometric pressure, wind speed, etc. (Steadman, 1979a,

1979b, 1984). Also, people usually spend majority of their time
indoors, e.g., Americans spend 86.9% of their time indoors on
average (Klepeis et al., 2001). Some variables (e.g. absolute humid-
ity) penetrate better than others. Moreover, several metrics are
typically used for each weather variable mentioned above, e.g., daily
mean, minimum, and maximum temperature, and no consensus
exists on which measure of temperature has the most influence on
mortality. Two likely reasons are that there is no single measure and
that using temperature alone is not sufficient to characterize heat
exposures. This fact contributes to the difficulty of comparing
various studies and inconsistencies in the heat-health associations
found in addition to differences in culture, housing and exposure
across regions and populations. Identifying which variables are
most consistently predictive of health outcomes across multiple
cities could aid epidemiologic research. Furthermore, identifying
the local weather conditions most predictive of heat-related mor-
tality could inform design of heat wave and heat health warning
systems by reducing the number of triggering metrics considered.
Such information may guide local public and weather service
authorities to more effectively mobilize resources to prevent
adverse health effects during hot weather.

A small number of studies have examined the performances
of different weather-related exposure metrics in estimating
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heat–mortality relationships; we describe two here. A multi-city
study examined the performance of mean, minimum and max-
imum temperature with and without humidity, and apparent
temperature and the Humidex (a function of temperature and
relative humidity) in predicting mortality using mortality and
weather data from 107 U.S. cities during 1987–2000 (Barnett et
al., 2010). The measure of temperature most associated with
mortality varied with city, season and age groups, but these
different temperature measures had the same predictive ability,
on average. Another multi-city study evaluated maximum tem-
perature, dew point temperature and a few combinations of these
two variables in 105 U.S. cities during 1987–2005 (Bobb et al.,
2011). It was reported that the best temperature measure varied
by city.

All these studies used either temperature predictors or
temperature-humidity indices within the regression framework,
and did not examine additional weather conditions simulta-
neously (e.g., absolute humidity and barometric pressure). Also,
the generalized linear model (GLM) or generalized additive model
(GAM) used in these prior studies does not have the ability to
account for high-order interaction among covariates. Our prior
work proposed a hybrid clustering method to classify potentially
‘dangerous’ heat based on four daily weather conditions: max-
imum/minimum temperature and maximum/minimum dew point
(Zhang et al., 2012). Yet, even that approach did not take many
weather variables into consideration simultaneously. Like studying
multi-pollutant mixtures, properly accounting for the multiple
weather conditions to which humans are exposed is a challenge
for assessing heat-related health effects.

This study aims to evaluate many weather conditions simulta-
neously and identify the most important weather variables in
predicting excess death counts associated with hot weather by
evaluating their prediction performance. This analysis takes
advantage of a recent advance in statistical learning methods—
the random forests approach, and accounts for exposures to
multiple weather conditions in a data-driven way. This approach
reduces substantial scientific meteorological-related judgments
while taking many weather conditions into consideration. It is
important to note that this paper is not to demonstrate that
random forests are an alternate method to GAM or GLM in heat-
related epidemiological studies.

2. Methods

2.1. Data sources

This study uses daily mortality data and weather observations from four U.S.
cities (Chicago, IL; Detroit, MI; Philadelphia, PA; and Phoenix, AZ) from 1998 to
2006. Death records were obtained from the National Center for Health Statistics.
To prepare the data for analysis, we created daily counts of deaths, first for all-cause
mortality and then for cause-specific mortality. International Classification of
Diseases tenth revision (ICD-10) codes were in use for the period 1998–2006.
Daily total mortality excluded injuries and external causes (ICD-10 beginning with
S through Z). Mortality counts were further classified as cardiovascular diseases
(CVD; ICD-10 codes I01–I52), stroke (ICD-10 codes I60–I69), myocardial infarction
(MI; ICD-10 codes I21–I22), congestive heart failure (CHF; ICD-10 codes I50),
pneumonia (ICD-10 codes J12–J18), chronic obstructive pulmonary disease (COPD;
ICD-10 codes J40–J44 and J47) and respiratory disease (ICD-10 codes J00–J99).

We aimed to evaluate whether hot weather conditions would be associated
with increased levels of daily mortality counts, compared to the expected levels for
any given day, based on a long-term average. To define the generally expected level
of daily mortality counts, we modeled mortality counts as a smooth function (a
cubic spline) of day of the year (degrees of freedom¼5) while adjusting for day of
week and year over the time period of our study (1998–2006). Day of the year
indicates a seasonal trend, which has been assumed to be the same each year and
has thus been coded as 1 to 365/366. The indicator variable for year enables control
of long-term trends, if present. From this smooth function, we created a single
smooth function that represented the annual ‘expected’ pattern of daily mortality
averaged over the entire 9 years of data. A smooth function was created for all-

cause mortality as well as for the cause-specific mortality. Then, using the daily
deaths predicted by this smooth function for a given calendar date (e.g., July 10), we
calculated the difference between the observed daily and the ‘expected’ for various
categories of mortality. This variable can take on negative or positive values and we
refer to it as deviation from typical daily mortality counts. We used this concept in
our previous work to evaluate our proposed hybrid clustering method to identify
potentially ‘dangerous’ hot days (Zhang et al., 2012).

Weather measurements from four cities were obtained from the National
Climatic Data Center (NCDC, 2010). From this data, we created variables of daily
minimum, mean and maximum temperature, dew point, apparent temperature,
barometric pressure and absolute humidity. Each variable was calculated on the
same day as, one day before, and two days before the deaths occurred. Besides
these weather variables, calendar month as an additional variable was used to
account for timing in season as a potential indicator of early season heat waves in
the data analysis. Apparent temperature was derived using the equation from
Zanobetti and Schwartz (2008). The description of all variables is shown in Table 1.

2.2. Approach

We applied a machine learning method called random forests to select the
most important variables among all available variables in predicting deviation from
typical daily mortality counts. Random forests are an extension of regression tree
methods. Before discussing the specifics of the analysis, we next provide an
overview of these statistical methods.

A regression tree is a non-parametric statistical learning technique described
by a tree-structured algorithm (Faraway, 2006). Using this method, a dataset is
partitioned in a recursive manner. This algorithm evaluates every possible division
point of every predictor of the variable of interest to make a split in the data at each
step, and the choice of a predictor variable and its value are determined by
minimizing variance in predictions (Faraway, 2006). For example, our objective in
this paper was to use weather variables as inputs to predict deviation from typical
daily mortality counts. The basic idea is to partition the space of weather variables
recursively into two smaller regions. At each step, the algorithm chose one of the
weather variables and the value to split it on which better predicted deviation from
typical daily mortality counts compared to other variables and values. In other
words, the algorithm chose the most “dangerous” weather condition during each
split. Each leaf or terminal node represents a partition region, characterized by a set
of weather conditions associated with a deviation from typical expected mortality.
Importantly, these conditions include potentially high order interactions among the
predictors. (We present an example to illustrate the regression tree structure with
terminal nodes in Supplementary material, S1). Regression tree methods are
relatively straightforward to understand and implement, and can be used to find
interaction effects among predictor variables, but its results are sensitive to small
changes in the data, especially outliers (Faraway, 2006). The recursive nature of the
regression tree method derives from the fact that it is performed on the most
important predictors selected from the previous step.

Random forests are a collection of classification and regression trees that can be
used to predict values or categories of target variables (Breiman, 2001). Each
individual tree in the forest represents results from a specific regression tree
(Breiman, 2001). Each tree is constructed based on a bootstrap sample of a dataset
and a random subset of predictors. A final classification decision is a majority vote
or the weighted average of all individual trees. Random forests have shown better
prediction performances compared to other classification and regression tree
methods, and can deal with missing values and a combination of binary and
continuous variables automatically (Breiman, 2001). The importance of each
predictor can also be quantified by assessing averaged prediction error across all
random trees. Random forests can allow for complicated interactions among highly
correlated predictors, and can decrease prediction errors compared to traditional
regression tree methods (Breiman, 2001) because results are averaged among
all trees.

In this paper, various weather variables and metrics were assessed in predicting
deviation from typical daily mortality counts using random forests: daily mini-
mum/maximum temperature, dew point, barometric pressure and absolute humid-
ity on the same day as, one day before, and two days before the deaths occurred.
The most important weather variables were determined by the importance scores
derived from random forests, which are quantified as the average percent increase
in mean squared error. Note that the outputs of random forests (e.g., importance
scores here) are different from GAM and GLM in heat-related epidemiological
studies which provide estimates of relative risk (e.g., percent change in mortality
risk). In this analysis, the random forests' approach took 20,000 bootstrap samples
of summertime (May 1st to September 30th) weather and mortality data from each
one of the four cities, and each sample resulted in a tree. For each bootstrap sample,
prediction error was derived by predicting the data not included in this boot-
strap sample commonly called out-of-bag data, and the importance score of an
independent variable was calculated by comparing the prediction errors from the
permuted sample of that variable in the out-of-bag data to those from the
unpermuted sample of that variable. A concrete example of the permutation
approach is as follows: when we used a bootstrap sample to construct a regression
tree using weather variables and heat-related mortality in the study period, we
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