Water Research 88 (2016) 691-702

Contents lists available at ScienceDirect

Water Research

journal homepage: www.elsevier.com/locate/watres

Perchlorate formation during the electro-peroxone treatment of chloride-containing water: Effects of operational parameters and control strategies

Zhirong Lin, Weikun Yao, Yujue Wang^{*}, Gang Yu, Shubo Deng, Jun Huang, Bin Wang School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and

Pollution Control, Tsinghua University, Beijing 100084, China

ARTICLE INFO

Article history: Received 23 June 2015 Received in revised form 26 October 2015 Accepted 2 November 2015 Available online 5 November 2015

Keywords: Chloride Chlorate Perchlorate Boron-doped diamond electrode Ozone Hydrogen peroxide

ABSTRACT

This study investigated the degradation of clofibric acid and formation of perchlorate during the electroperoxone (E-peroxone) treatment of chloride-containing (26.1–100 mg L⁻¹) water (Na₂SO₄ electrolytes and secondary effluents). The E-peroxone process involves sparging O₂ and O₃ gas mixture into an electrolysis reactor where a carbon-based cathode is used to electrochemically convert the sparged O₂ to H₂O₂. The electro-generated H₂O₂ then reacts with sparged O₃ to produce 'OH, which can rapidly oxidize pollutants in the bulk solution. When boron-doped diamond (BDD) electrodes were used as the anode, perchlorate concentrations increased significantly from undetectable levels to ~15–174 mg L⁻¹ in the different water samples as the applied current density was increased from 4 to 32 mA cm⁻². In contrast, no ClO₄ was detected when Pt/Ti anodes were used in the E-peroxone process operated under similar reaction conditions. In addition, when sufficient O₃ was sparged to maximize 'OH production from its peroxone reaction with electro-generated H₂O₂, the E-peroxone process with Pt/Ti anodes achieved comparable clofibric acid degradation and total organic carbon (TOC) removal yields as that with BDD anodes, but did not generate detectable ClO₄. These results indicate that by optimizing operational parameters and using Pt/Ti anodes, the E-peroxone process can achieve the goal of both fast pollutant degradation and ClO₄ prevention during the treatment of chloride-containing wastewater.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The electro-peroxone (E-peroxone) process is a promising electrochemically-driven advanced oxidation process (AOP) that has shown great potential for water and wastewater treatment (Li et al., 2015b, 2013; Wang et al., 2015a; Yuan et al., 2013). The E-peroxone process couples conventional ozonation with electrolysis process, and uses a carbon-based cathode to electrochemically convert O₂ in the sparged ozone generator effluents (O₂ and O₃ gas mixture) to H_2O_2 (Eq. (1)) (Yuan et al., 2013). The in-situ generated H_2O_2 then reacts with the sparged O₃ via the so-called peroxone reaction (Eq. (2)) to yield hydroxyl radical (`OH) (Bakheet et al., 2013; Li et al., 2013), which is a very powerful oxidant and can non-selectively oxidize most organic solutes at diffusion control limited rates. Previous work has indicated that by electrochemically

* Corresponding author. E-mail address: wangyujue@tsinghua.edu.cn (Y. Wang). driving the peroxone reaction to produce 'OH in the bulk solution, the E-peroxone process can overcome several inherent limitations of conventional ozonation and electrolysis processes for organic pollutant degradation, e.g., the selective oxidation with O₃ and the limitation of pollutant mass transfer to the electrodes on their degradation kinetics (Bakheet et al., 2013). Consequently, the Eperoxone process can greatly improve the kinetics and energy efficiency for the degradation of pollutants, especially ozonerefractory pollutants such as 1,4-dioxane, ibuprofen, and oxalic acid (Li et al., 2014; Wang et al., 2015a, 2015b).

$$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$$
 (1)

$$H_2O_2 + 2O_3 \rightarrow 2 \cdot OH + 3O_2$$
 (2)

Besides enhancing pollutant degradation, the E-peroxone process can inhibit the formation of some undesired by-products (e.g., polymers and bromate) that would otherwise form during conventional electrolysis and ozonation processes (Bakheet et al., 2014;

Li et al., 2015b). For example, we have found that the adaption of conventional ozonation to the E-peroxone process can inhibit the formation of carcinogenic bromate (BrO₃⁻) during the treatment of bromide-containing water (Li et al., 2015b), which has been a major drawback associated with conventional ozonation process (von Gunten, 2003). This improvement is mainly because electrogenerated H_2O_2 can rapidly reduce $HBrO/BrO^-$ (a key intermediate for BrO₃⁻ formation) back to Br⁻ (von Gunten and Hoigne, 1994), thus preventing their further oxidation to BrO₃⁻ (Li et al., 2015b). These promising results suggest that by electrochemically producing H_2O_2 in situ from O_2 that would otherwise be wasted in conventional ozonation process, the E-peroxone process may provide a simple and effective way to improve the performance of existing ozonation systems that are widely used in water and wastewater treatment.

Similar to Br⁻, chloride (Cl⁻) is another halide element that is ubiquitously present in natural water and wastewater, ranging from several mg L^{-1} for fresh water to thousands mg L^{-1} for high salinity water (Bagastyo et al., 2012; Bergmann et al., 2009; Jung et al., 2010; Wang et al., 2012; Zöllig et al., 2015). A vast number of studies have indicated that during electrochemical treatment, Cl⁻ may be oxidized to undesired oxychlorine species such as chlorate (ClO_3) and perchlorate (ClO_4) at the anode (Azizi et al., 2011; Bergmann et al., 2014, 2009; Hubler et al., 2014; Neodo et al., 2012; Sanchez-Carretero et al., 2011). Chlorate is currently not regulated because its adverse health effects have not been well established (von Gunten, 2003). By contrast, perchlorate is wellknown to be associated with several severe health problems, and therefore under strict regulations in many countries, e.g., the USEPA has issued a health advisory level of 15 mg L^{-1} for drinking water sources (USEPA, 2008). As a combined process of ozonation and electrolysis, the E-peroxone process may also generate some undesired oxychlorine species during the treatment of chloridecontaining water, which requires further investigation.

During electrolysis, Cl⁻ is progressively oxidized at the anode to higher oxychlorine anions, i.e., hypochlorite (OCl⁻), chlorite (ClO₂), chlorate (ClO₃) and perchlorate (ClO₄) (Hubler et al., 2014; Lacasa et al., 2012; Sanchez-Carretero et al., 2011). When Pt anodes and dimensionally stable anodes (DSA, e.g., IrO₂/Ti and RuO₂/Ti) are used, ClO₃ is usually the highest oxychlorine species that can form in appreciable amounts, whereas ClO₄ formation is insignificant (Bergmann et al., 2014; Jawando et al., 2015; Lacasa et al., 2012; Sanchez-Carretero et al., 2011). In contrast, ClO₄ constitutes a major oxychlorine product when boron-doped diamond (BDD) electrodes are used as the anode, and complete conversion of Cl⁻ to ClO₄ can be obtained with prolonged reaction time (Azizi et al., 2011; Bergmann et al., 2009; Hubler et al., 2014; Sanchez-Carretero et al., 2011).

The significant formation of ClO_4^- in electrolysis with BDD anodes can be mainly attributed to the high activity of BDD anodes for 'OH production from water discharge (Eq. (3)) (Azizi et al., 2011; Hubler et al., 2014; Lacasa et al., 2012; Sanchez-Carretero et al., 2011). In addition, BDD anodes are non-active electrodes whose surface does not interact with the generated 'OH to form the socalled higher oxide as what occurs on the surface of active electrodes (e.g., Pt, IrO₂/Ti, and RuO₂/Ti) (Jeong et al., 2009; Panizza and Cerisola, 2009). As a result, the 'OH can then react with ClO₃ radicals that are also electrochemically generated at the BDD anode surface to form ClO_{4}^{-} (Eqs. (4) and (5)) (Azizi et al., 2011; Hubler et al., 2014). Due to their superb activity for 'OH generation, BDD electrodes have attracted increasing interest in water and wastewater treatment for the degradation of refractory organic pollutants (Panizza and Cerisola, 2009; Qiu et al., 2014). However, it seems that the same feature of BDD anodes promotes perchlorate formation, which represents a major challenge in the application of BDD anodes, especially in drinking water related processes (Bergmann et al., 2014).

$$BDD(H_2O) \rightarrow BDD^{\bullet}(OH) + H^+ + e^-$$
(3)

$$ClO_3^- \rightarrow ClO_3^+ + e^-$$
 (4)

$$\bullet OH + ClO_3 \rightarrow HClO_4 \tag{5}$$

Notably, a recent study by Cotillas et al. (2015) suggested that by electrochemically generating H_2O_2 from sparged O_2 at a carbon felt cathode, ClO_4^- formation could be inhibited during electrochemical disinfection of chloride-containing water with BDD anodes. Similar mechanisms as those for BrO_3^- inhibition in the E-peroxone process were proposed for this phenomenon, that is, the electro-generated H_2O_2 can reduce ClO^- and ClO_3^- back to Cl^- and ClO_2^- , respectively (Eqs. (6) and (7)), thus impeding the formation pathway of ClO_4^- (Cotillas et al., 2015). It is therefore interesting to evaluate if similar reactions may occur in the E-peroxone process to minimize the formation of ClO_4^- during its treatment of chloride-containing water.

$$2CIO^{-} + 2H_2O_2 \rightarrow 2CI^{-} + 3O_2 + 4H^+$$
 (6)

$$2H^{+} + 2ClO_{3}^{-} + H_{2}O_{2} \rightarrow 2ClO_{2} + 2H_{2}O + O_{2}$$
(7)

However, it should be noted that the introduction of O_3 would significantly change the reaction network involved in the formation and control of ClO_4^- in the E-peroxone process. For example, O_3 can compete with ClO^- and ClO_3^- for the electro-generated H_2O_2 (Eq. (2)). It can also participate in the oxidation of ClO^- and ClO_2^- to higher oxychlorine species (e.g., Eqs. (8)–(10) (Klaning et al., 1985; Nicoson et al., 2002; von Gunten, 2003)). It is therefore anticipated that the reaction mechanisms for ClO_4^- formation would be much more complicated in the E-peroxone process than in electrolysis with only pure O_2 sparging (see Table S1 in the Supplementary Data (SD) for a list of reactions that may be involved in ClO_4^- formation during the E-peroxone process).

$$ClO^{-} + O_3 \rightarrow O_2 + ClO_2^{-}$$
 (8)

$$ClO_2^- + O_3 \to O_3^- + ClO_2$$
 (9)

$$ClO_2^- + O_3 \to O_2 + ClO_3^-$$
 (10)

Therefore, the main objectives of this study were to (a) investigate the reaction mechanisms of ClO₄ formation during the Eperoxone treatment of chloride-containing water, and (b) test possible control strategies to minimize ClO₄ formation during effective pollutant degradation by the E-peroxone process. To this end, this study investigated the formation of ClO_4^- during the degradation of clofibric acid in chloride-containing water by the Eperoxone process. Clofibric acid was selected as the model compound of ozone-resisting contaminants because it reacts with O₃ very slowly $(k_{03} < 20 \text{ M}^{-1} \text{ s}^{-1})$ and is commonly detected in various waters (e.g., surface water and municipal wastewater) (Huber et al., 2005). The evolution of chlorine species was monitored to investigate the fate of Cl⁻ during the E-peroxone process. The effects of main operational parameters (e.g., current, O₃ dose, and anode type) on clofibric acid degradation and oxychlorine formation were systematically evaluated.

Download English Version:

https://daneshyari.com/en/article/6365544

Download Persian Version:

https://daneshyari.com/article/6365544

Daneshyari.com