

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/watres

Biodegradability of wastewater and activated sludge organics in anaerobic digestion

D.S. Ikumi, T.H. Harding, G.A. Ekama*

Water Research Group, Department of Civil Engineering, University of Cape Town, Rondebosch, 7700 Cape, South Africa

ARTICLE INFO

Article history: Received 10 October 2013 Received in revised form 21 December 2013 Accepted 2 February 2014 Available online 28 February 2014

Keywords:

Municipal wastewater Unbiodegradable particulate organics Primary sludge Activated sludge Endogenous residue Anaerobic digestion Plant wide modelling

ABSTRACT

The investigation provides experimental evidence that the unbiodegradable particulate organics fractions of primary sludge and waste activated sludge calculated from activated sludge models remain essentially unbiodegradable in anaerobic digestion. This was tested by feeding the waste activated sludge (WAS) from three different laboratory activated sludge (AS) systems to three separate anaerobic digesters (AD). Two of the AS systems were Modified Ludzack - Ettinger (MLE) nitrification-denitrification (ND) systems and the third was a membrane University of Cape Town (UCT) ND and enhanced biological P removal system. One of the MLE systems and the UCT system were fed the same real settled wastewater. The other MLE system was fed raw wastewater which was made by adding a measured constant flux (gCOD/d) of macerated primary sludge (PS) to the real settled wastewater. This PS was also fed to a fourth AD and a blend of PS and WAS from settled wastewater MLE system was fed to a fifth AD. The five ADs were each operated at five different sludge ages (10-60d). From the measured performance results of the AS systems, the unbiodegradable particulate organic (UPO) COD fractions of the raw and settled wastewaters, the PS and the WAS from the three AS systems were calculated with AS models. These AS model based UPO fractions of the PS and WAS were compared with the UPO fractions calculated from the performance results of the ADs fed these sludges. For the PS, the UPO fraction calculated from the AS and AD models matched closely, i.e. 0.30 and 0.31. Provided the UPO of heterotrophic (OHO, $f_{E OHO}$) and phosphorus accumulating (PAO, $f_{E PAO}$ biomass were accepted to be those associated with the death regeneration model of organism "decay", the UPO of the WAS calculated from the AS and AD models also matched well - if the steady state AS model $f_{E\ OHO}=0.20$ and $f_{E\ PAO}=0.25$ values were used, then the UPO fraction of the WAS calculated from the AS models deviated significantly from those calculated with the AD models. Therefore in plant wide wastewater treatment models the characterization of PS and WAS as defined by the AS models can be applied without modification in AD models. The observed rate limiting hydrolysis/acidogenesis rates of the sludges are listed.

© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.watres.2014.02.008 0043-1354/© 2014 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +27 21 650 2585; fax: +27 21 689 7471. E-mail address: george.ekama@uct.ac.za (G.A. Ekama).

List of abbreviations		
AD	Anaerobic digestion	
ADM1	Anaerobic digestion models No 1	
AS	Activated sludge	
ASM1, 2	, 2d Activated sludge models No 1, 2 and 2d	
BPO	Biodegradable particulate organics	
BSM2	Benchmark simulation model No 2	
BSO	Biodegradable soluble organics	
COD	Chemical oxygen demand	
d	Day	
DSVI	Diluted sludge volume index	
EBPR	Enhanced biological phosphorus removal	
F	Filtered	
F-BSO	Fermentable biodegradable soluble organics	
FSA	Free and saline ammonia	
g	gram	
ISS	Inorganic suspended solids	
1	Litre	
m	Metre	
MLE	Modified Ludzack-Ettinger system	
N	Nitrogen	
ND	Nitrification-denitrification	
OHO	Ordinary heterotrophic organism	
OUR	Oxygen utilization rate	
P	Phosphorus Orthough a service to	
OP DAO	Ortno-phosphate	
PAO DD	Phosphorus accumulating organisms	
PP DC	Polyphosphate	
rð nH	Negative log of the hydrogen ion activity	
SBT	Solids retention time (or sludge age)	
TKN	Total Kieldahl nitrogen	
ТР	Total phosphorus	
TSS	Total suspended solids	
UCT	University of Cape Town	
UF	Unfiltered	
UPO	Unbiodegradable particulate organics	
USO	Unbiodegradable soluble organics	
VFA	Volatile fatty acids	
VSS	Volatile suspended solids	
WAS	Waste activated sludge	
WRC	Water Research Commission	
WW	Wastewater	
WWTP	Wastewater treatment plant	
List of symbols ¹		
h /d	general narameter for endogenous respiration	
0,7u	rate	

E, – Proportion of influent COD flux (gCOD/d) exiting
system as sludge production (gCOD/d)
f _E , – general parameter for unbiodegradable fraction of biomass
f _{COD_VSS} , gCOD/gVSS COD content of organics (COD/VSS ratio, f _{cv})
f _{OHO_VSS} , gVSS/gVSS OHO/VSS ratio of activated sludge (=X _{OHO} /X _{VSS} , f _{av})
f_{xE_OHO} , - OHO unbiodegradable fraction associated with endogenous respiration in steady state ND AS model (=0.20, f_{EH})
f'_{xE_OHO} , - OHO unbiodegradable fraction associated with death regeneration in dynamic ASM1 (=0.08, f'_{EH})
f _{xE_PAO} , – PAO unbiodegradable fraction associated with endogenous respiration in steady state NDEBPR AS model (=0.25, f ₁ -)
$f'_{P,P,P,Q} = PAO unbiodegradable fraction when assigned$
T_{xE_PAO} , The unbioacertaable fraction when abigined the same value as OHOs associated with death
regeneration (=0.08, $f_{\rm FC}$)
f_{P_vVSS} , gP/gVSS Phosphorus content of particulate organics
or biomass (f _p)
$f_{xU,CODInf}$, gCOD/gCOD fraction of influent total COD that is
unbiodegradable and particulate
$(^{LS} up)$
unbiodegradable and soluble (fe'up)
k _b , /d Specific hydrolysis/acidogenesis rate of BPO in AE
k _H , gCOD/(l.d) First order specific hydrolysis/acidogenesis
rate of BPO in AD
k _m , gCOD/gCOD/d Maximum BPO hydrolysis/acidogenesis
rate in AD in Monod kinetics in AD
k _M , gCOD/gCOD/d Maximum BPO hydrolysis/acidogenesis
rate in AD in saturation kinetics in AD
K _s , gCOD/1 Hall Saturation concentration for BPO
AD
K_S , gCOD/l Half saturation concentration for BPO
hydrolysis/acidogenesis in saturation kinetics
in AD
r _{hyd} , gCOD/(I.d) Volumetric BPO hydrolysis rate in AD
X _{B,Eff} , mgCOD/1 effluent blodegradable particulate COD concentration (Spec)
X _{B Inf} , mgCOD/l influent biodegradable particulate COD
concentration (S _{bpi})
S _{B,Inf} , mgCOD/l influent biodegradable soluble COD
concentration (S _{bsi})
X _{U,Eff} , mgCOD/l effluent unbiodegradable particulate COD concentration (S _{upe})
· · · · · · · · · · · · · · · · · · ·

1. Introduction

In plant wide modelling, a question that arises is "do organics that are unbiodegradable in the activated sludge (AS) system, namely, the unbiodegradable particulate organics (UPO, $X_{U,Inf}$)

 $^{^1}$ As recommended by Corominas et al. (2010) with the UCT equivalent given in brackets for easy cross reference to the papers on the AS and AD steady state models in the old units.

Download English Version:

https://daneshyari.com/en/article/6366908

Download Persian Version:

https://daneshyari.com/article/6366908

Daneshyari.com