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H I G H L I G H T S

� A generic model applicable to biological phenomena described by directed graphs.
� A way to generate the order of importance of biological agents.
� A random walk model for a directed graph based on biological phenomena.
� Two methods to compute the flux of walkers in a directed graph.
� A diffusion model of “stimuli” in a biological network.
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a b s t r a c t

In this work we redefine the concept of biological importance and how to compute it, based on a model
of complex networks and random walk. We call this new procedure, theoretical knock-out (KO). The
proposed method generalizes the procedure presented in a recent study about Oral Tolerance. To devise
this method, we make two approaches: algebraically and algorithmically. In both cases we compute a
vector on an asymptotic state, called flux vector. The flux is given by a random walk on a directed graph
that represents a biological phenomenon. This vector gives us the information about the relative flux of
walkers on a vertex which represents a biological agent. With two vector of this kind, we can calculate
the relative mean error between them by averaging over its coefficients. This quantity allows us to assess
the degree of importance of each vertex of a complex network that evolves in time and has experimental
background. We find out that this procedure can be applied in any sort of biological phenomena in which
we can know the role and interrelationships of its agents. These results also provide experimental
biologists to predict the order of importance of biological agents on a mounted complex network.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Biological phenomena often rely on a variety of complex de-
pendencies, feed-backs, and auto regulations. As we try to build a
general theory to understand these phenomena, one may find it
difficult to uncover a common ground to dissertate about biolo-
gical central questions. One of the most influential theoretical
biologists was Nicholas Rachevsky. He introduced the idea that
those phenomena could be approached into two different ways:
the relational and metrical aspects of biological systems (Ra-
shevsky, 1948).

The relational biology deals with the complexity and relation-
ships observed on well defined biological agents, such as:

enzymes, cells, tissues, organs, species, etc. This sort of approach
leads to general structures which can mainly be modeled by
graphs, in the terms of graph theory, which is consistent on how
reliant on complex structures biological phenomena are. Most of
the complex network theory (i.e., graphs that models real entities)
developed today for modeling biological systems is a remnant of
Rachevsky view point of biological processes. However, there are
few works that recognize this author’s contribution to this field,
and we find a wealth of concepts that can be availed in order to
understand biological processes.

On the other hand, there is the metrical biology that en-
compasses the reducionistic approach of modern biology and
biotechnology. This approach allows one to know the biological
structures involved on a phenomenon in details, but it rely mostly
on the assumption that structure imply function (Cottam et al.,
2007). In other words, the knowledge of smalls structures involved
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in a phenomenon implies in the knowledge of all its function and
leads ultimately to the understanding, description, and prediction
of the subject matter.

We recognize that modern biology has shed light on much of
what we actually know about behavior of biological systems by
the knowledge of its parts. However, there still exist difficulties
which pervade general realizations of biology itself. Some of the
main questions of biology can exemplify these difficulties: what is
preserved in life phenomena; how structures are related to give
rise to life; how life behaves in time and space, and so on. In order
to answer and reconcile these questions it is necessary to build a
general theory that turns it possible to approach biology con-
ceptually and experimentally. Modern biology have shown that it
has no discourse to offer this theory, since biological phenomena
are resilient to final reduction in terms of Cartesian Method
(Cottam et al., 2007). This fact of resilience is due to the nature of
these phenomena and how we understand them. The lack of a
general theory into a metrical approach for biology, pull theore-
tical biologists towards the relational biology language. One of the
most important contribution to this area was the model in-
troduced by Rosen (1958). In his work, Rosen proposed a meta-
bolic network’s model that takes into account three metabolycal
processes: anabolism, catabolism, and repair. This model is known
as ( )−M R system, , and it is composed by a set of components Mi of
the system M . This system is a connected directed graph in which
the vertices are components (i.e., representatives of biological
agents) and the directed edges are input and outputs to the
components.

The inputs are directed edges that points toward a component
and outputs are directed edges that points from components. We
interpret inputs and outputs as materials to be utilized by com-
ponents in order to generate outputs. In this theory, Rosen dif-
ferentiate coarse structures and fine structure. The latter relates to
abstract systems in which vertices are “black boxes”, which it is
known only its input materials and output materials, but not how
it operates; and the former relates to specific known systems of
cells, enzymes, tissues, organs – which are results of metrical
biology that convey the bridge between the relational biology
(Rosen, 1958). After this work, Rosen realized that is wasnot en-
ough to describe most metabolycal phenomena and used this in-
troductory work as a background to posterior formalization: the
categorification of ( )−M R system, via category theory (Rosen, 1958,
1959).

A good general theory for a field like biology should allows one
to test experimentally, or numerically, each step that the theory
when it is developed and detailed. By this assumption we mean
that the most propositions should be testable to turn the theory
intelligible and scientifically valid. Studying Rosen’s model, we
find an important proposition that took our attention: the im-
portance of each component of a ( )−M R system, . Rosen defend
that certain components are more important in the operation of
the system, and take as a measure of the importance the number of
environmental outputs of the system that cease to be produced due
to a component inhibition (Rosen, 1958). This informal definition
of a vertex (i.e., component) importance in a biological systems
accounts only on the system outputs to the environment, and has
little to do with the internal implication of a vertex inhibition.

If we consider a non-central component of a ( )−M R system, ,
which is a vertex that if removed would not result in the failure of
the entire system, this vertex still should cause more damage than
imagined since the mutual reliance of vertex is frequently found in
biological systems. For example, the failure of a secondary cyto-
kine can generate debilitation on the complex network in which
that cytokine play a role. This is observable because other cytokine,
being primary, should compensate the lack of the former inhibited
cytokine and the dynamics of the network changes internally, but

is generating the same sort and amount of environment outputs.
However, when time goes on, the systems changes completely by
the inhibition of that secondary cytokine, and some pathology or
system malfunction may arise. In another example, lets us con-
sider a cell where exists many enzymes which have the same
substrate. The inhibition of them causes a demand in the other,
altering the quantity of products generated by the same substrate.
As in the case of cytokines, the inhibition of a secondary enzyme
causes the primary to be overused, and more transcription of the
gene that corresponds that enzyme must be performed. As time
progresses, the cellular network will change internally while it is
trying to keep its outputs in an acceptable level. A species that
have a defined niche, when inhibited in an ecological system, shall
cause less competition on species of same niche and limited re-
sources. This inhibition cause variation on how other species are
related ultimately changing the structure and dynamical de-
pendences of the complex system it is modeled by. Still, a view
from “outside” of the ecological system does not demonstrate great
differenced before and after removing a species (unless it is a
central species), since most environmental outputs are being
produced.

Besides subtle, these examples illustrate how deeply is the
consequence of removing a system’s component. It also illustrates
how the alteration of the system’s outputs, by itself, should not
suffice to quantify the degree of importance of a component. In
order to remove the subtlety of this conception, this work has as
aim to generate a steady quantification of the importance of each
component involved in a biological network. Inspired on knock-
out (KO) on animal models, in which a gene is suppressed and a
population of animal subjects is knocked-out for its corresponding
phenotype, we introduce the concept of theoretical KO, which is
the effect of the removal of a vertex and how it affects the biolo-
gical network in which it belongs.

We also want to emphasize that such importance quantifica-
tion changes the previous concept of biological importance given
by Rosen’s work. We defend that this concept is based on the
participation of the biological agents in relation to the whole
network that contains it. In other words, the importance of bio-
logical agents must rely on how they change the internal dynamics
when putted away. We devised this conceptual background from
the generalization of a previous study about Oral Tolerance (Mir-
anda et al., 2015). We noted that such method could be applicable
in any sort of biological network that the notion of biological im-
portance is ubiquitous. In other words, the main contribution of
this work is to redefine biological importance in a complex back-
ground and to quantify such importance by utilizing a standard
procedure.

We can apply this procedure to any biological phenomena that
can be modeled by a connected directed graph in which dynamical
processes can be used. We proceed with this endeavor using
random walks in directed graph model, exploring both analytical
and computational of this stochastic dynamics. To organize our
specific goals to achieve this particular objective we list:

i. propose a generic model in which it is possible to use random
walk in directed graphs to define and to calculate an invariant
quantity that allows to measure the importance of any vertices
of a graph (i.e., complex network);

ii. propose an analytical method to find the same invariant
quantity due to the random walk in complex networks, and
when applicable;

iii. propose an algorithm that encompasses the sequence of op-
eration over the network to generate statistically the defined
invariant quantity;

iv. defend and discuss the experimental utility of the model for
predicting important theoretical KOs.
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