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HIGHLIGHTS

o The relationships between GR and OR at the disease locus are obtained.
o The relationships between GR and OR at the marker locus are obtained.
e The procedures for choosing the genetic model is proposed.
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Genetic risks and genetic models are often used in design and analysis of genetic epidemiology studies. A
genetic model is defined in terms of two genetic risk measures: genotype relative risk and odds ratio. The
impacts of choosing a risk measure on the resulting genetic models are studied in the power to detect
association and deviation from Hardy-Weinberg equilibrium in cases using genetic relative risk. Ex-
tensive simulations demonstrate that the power of a study to detect associations using odds ratio is
lower than that using relative risk with the same value when other parameters are fixed. When the
Hardy-Weinberg equilibrium holds in the general population, the genetic model can be inferred by the
deviation from Hardy-Weinberg equilibrium in only cases. Furthermore, it is more efficient than that
based on the deviation from Hardy-Weinberg equilibrium in all cases and controls.
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1. Introduction

In the last several decades, genome-wide association studies
(GWAS) have been considered as a big success in searching for the
deleterious genetic susceptibilities and hundreds of complex traits
have been reported to be associated with the genetic variants,
such as obesity (Locke et al., 2015), type 1 diabetes (Todd et al.,
2007), type 2 diabetes (Altshuler et al., 2000), carcinoid heart
disease (CHD) (Korse et al., 2009). Association studies are a major
tool for identifying genes conferring susceptibility to complex
traits. These traits are termed complex because they are influenced
by both genetic and environmental factors. In the design and
analysis of genetic association studies, genetic models are often
used. A genetic model refers to Mendel's mode of inheritance
(Vogel and Motulsky, 1986). Mendel observed 50% heterozygote AB
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and 25% homozygote of each parental type AA or BB from the
crossing of two heterozygotes AB x AB. He found that the phe-
notype is not always determined by a genotype, and called the
allele that determines the phenotype of AB dominant, other allele
recessive.

A genetic model is a functional relationship of a risk measure
given genotypes. For a binary trait, e.g. case-control data, the risk
measure is genotype relative risk (GRR) or odds ratio (OR). It
should be noted that for a case-control study, the relative risk can
be only approximately estimated for a rare disease under the as-
sumption of Hardy-Weinberg Equilibrium. For a quantitative trait,
the risk measure is based on the means of the trait given geno-
types. In testing a genetic association, specifying a genetic model is
equivalent to specifying an alternative hypothesis. Design and
analysis with a correctly specified alternative hypothesis are gen-
erally more powerful than those with a more broad alternative
hypothesis. On the other hand, if the model is incorrectly specified,
the outcomes are not satisfactory. Thus, how to specify a correct
genetic model and avoid specifying a wrong genetic model are
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important in both design and analysis of genetic association stu-
dies. In genetics literatures, the genetic models are generally
classified in term of two measures: genotype relative risk and odds
ratio. However, no existing literatures have compared the influ-
ence of the two risk measures in the genetic association studies.

The Hardy—Weinberg equilibrium is a very important law in the
analysis of genetic data. Assume for a biallelic locus with the allele
A and B. Denote the genotypes by (Gg, Gy, G2) = (AA, AB, BB). The
HWE states that under random mating the genotype frequencies
in a population satisfy the relations: Pr(Go) = ¢2,
Pr(Gy) =2q(1 — q@), Pr(Gy) = (1 — q)?, where q is the allele fre-
quency of A. If there is no disturbing factors, such as population
stratification, genotyping error, the HWE law usually hold in the
source population.

In this paper, we examine the roles of using risk measures in
specifying genetic models and how they influence the design and
analysis of genetic association studies. We focus on case-control
studies but the quantitative trait is also briefly discussed. Then we
study how to specify a genetic model using the information of
derivation from Hardy—-Weinberg equilibrium in cases.

2. Risk measures and genetic models
2.1. Notation

Consider a disease locus with alleles A and B. Denote the gen-
otypes by (Go, G, G2) = (AA, AB, BB), the disease prevalence by x,
and the penetrance by f; = Pr(DIG;) (i = 0, 1, 2), where D stands for
the disease. In a case-control association study, the counts for G; in
r cases and s controls are denoted by r; and s;, respectively
(i=0,1,2).Denote nj=r+s;, i=0,1,2and n =ng + ny + ny.

For a quantitative trait, let the random trait be T=yu + g + ¢,
where y is the mean in the absence of the genetic effect, g is the
genetic effect with g= —a, d and a (a and d are two constants,
a>0 and -a<d <a) for genotypes Go, G; and G, and € is a
random error with O mean. Denote y; = E(TIG;), the conditional
mean given the genotype (i =0, 1, 2).

2.2. Binary traits

The GRRs and ORs are denoted by GRR;=f/f, and
ORi = {fi(1 - f)}/{ifr(d = f)H} (i=12). The null hypothesis is
Hy: GRR; = GRR; = 1 or Hp: OR; = OR; = 1. Genetic models are only
relevant under the alternative hypothesis H;. Without loss of
generality, assume B is the risk allele. Using the GRRs, the genetic
model is recessive (REC) if GRR;=1, additive (ADD) if
GRR; = (1 + GRRy)/2, and dominant (DOM) if GRR;= GRR,. The
definitions of genetic models using ORs are similar.

The alternative hypothesis H; can be specified in terms of a
genetic model, including the three common genetic models, using
GRRs with x or ORs with y as

Hy(x) = {(GRRy, GRRy) # (1, 1): GRR; =1 — x + XGRRy, x € [0, 1]1}; (])

Hi(y) = {(OR;, ORp) # (1, 1): ORy =1 -y + yOR;, y € [0, 11}, ()

The REC, ADD and DOM models correspond to x=0, x = 1/2 and
x=1in Hj(x) and y=0, y =1/2 and y=1 in H(y), respectively.
Specifying x = xy € [0, 1] or y =y, € [0, 1] is equivalent to specify
an alternative hypothesis Hj(xo) and H;(y,). Then sample size/
power and analysis can be done for the specified H;(xo) or H;(y)
rather than for H;(x) or Hy(y) with all x € [0, 1] or ¥y € [0, 1].

The first question to address is that whether or not the genetic
models defined using GRRs and ORs are equivalent. The following
properties of GRRs and ORs can be readily verified: (i) GRR, > GRR;

if and only if OR, > OR; and GRR; > 1 if and only if OR; > 1, where
all the equalities hold simultaneously; (ii) OR, > GRR, and
OR; > GRR;, where the equality holds under the REC model; (iii) if
GRR; = (1 + GRRy)/2, then OR; < (1 + ORy)/2; and (iv) let x and y be
given in Egs. (1) and (2), then y < x, where the equality holds
under either REC or DOM models.

Note that (i) implies that the REC or DOM models can be de-
fined in terms of either GRRs or ORs. However, from (iii), the ADD
model defined using GRRs differs from that defined using ORs.
Further, from (ii), the ORs are always larger than the GRRs given
the same genetic model. (iv) further implies, except for the REC
and DOM models, any other model defined using the GRRs with x
corresponds to a different model defined using the ORs with y and
that y < x. In other words, only the REC and DOM models do not
depend on the risk measures. Other models between the REC and
DOM models are only well defined given the risk measure.

Table 1 shows the values of y given x = 0, 1/2, 1, minor allele
frequencies (MAFs) and k. We assume that the Hardy-Weinberg
Equilibrium (HWE) proportion holds in the source population. It
indicates that MAF and « slightly affect the ORs given the GRRs, but
a larger k would increase the ORs for fixed GRRs. The results in
Table 1 have an implication in the design of association studies.
For example, under the REC model with MAF=0.3, « = 0.10, the
power to detect GRR=1.5 is the same as that to detect OR=1.584
with the same sample size. In other words, given the same sample
size, the power of a study to detect OR, = 1.5 would be lower than
that with GRR, = 1.5. For illustration, we assume « = 0.05,
r=s=1000, and a two-sided trend test. The powers to detect
OR; = 1.5 under the ADD model are 34.9%, 68.9%, 87.2%, and 89.4%
for MAF=0.05, 0.15, 0.30, and 0.45, respectively, while the powers
to detect GRR; = 1.5 under the same genetic model are 41.9%,
75.9%, 90.1%, and 92.5%, respectively. The power differences using
GRRs or ORs could be quite substantial.

Both GRRs and ORs are commonly used in the literature for
sample size and power calculations (Slager and Schaid, 2001;
Freidlin et al., 2002; Jackson et al., 2002; Pfeiffer and Gail, 2003)
and for deriving test statistics (Sasieni, 1997; Chen and Chaterjee,
2007). Our results indicate that in design of case-control genetic
association studies, one should pay attention to the choice of a risk
measure in calculating power and sample size, especially the same
risk measure should be used when comparing different study
designs and analysis. The GRRs and ORs have a one-to-one re-
lationship given fo. Given GRR;, OR;= GRR;(1 — f;)/(1 = GRRfy)
(i=0,1,2). Given OR;, GRR;=OR;/(ORfy +1-f) (i=0,1,2).
With these formulas, one can convert from GRRs to ORs and vice
versa.

We have discussed genetic models and risk measures at a
disease locus. In practice, only a marker locus is observed, which is
assumed to be in linkage disequilibrium (LD) with the disease

Table 1

ORs for a given genetic model defined by GRRs with GRR; = 1.5. The disease pre-
valence x = 0.05, 0.10, 0.20. x and y are two indexes for the GRR and OR, respec-
tively, which are the same as those in Eqs. (1) and (2).

x MAF  REC (x=0) ADD (x = 1/2) DOM (x=1)
y ORl OR2 y ORl OR2 y ORI OR2

005 005 0 1 1540 0494 1266 1539 1 1539 1539
015 0 1 1540 0494 1265 1538 1 1535 1535
030 0 1 1539 0494 1264 1535 1 1532 1532
045 0 1 1537 0495 1263 1533 1 1529 1529

010 005 0 1 1540 0486 1285 1586 1 1583 1583
015 0 1 1587 0487 1283 1581 1 1576 1576
030 0 1 1584 0488 1280 1575 1 1568 1568
045 0 1 1579 0489 1278 1570 1 1563 1563
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