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a b s t r a c t

Data, on the number of infected, gathered from a large epidemic outbreak can be used to estimate param-
eters related to the strength and speed of the spread. The Malthusian parameter, which determines the
initial growth rate of the epidemic is often of crucial interest. Using a simple epidemic SEIR model with
known generation time distribution, we define and analyze an estimate, based on martingale methods.
We derive asymptotic properties of the estimate and compare them to the results from simulations of
the epidemic. The estimate uses all the information contained in the epidemic curve, in contrast to esti-
mates which only use data from the start of the outbreak.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

When considering possible effects of an epidemic outbreak of
an infectious disease several characteristics are of interest. Tradi-
tionally the basic reproduction number, R0, is considered impor-
tant. It is defined as the mean number of persons an infected
infects in a totally susceptible population. R0 is closely related to
the proportion of a population that finally will be infected during
an epidemic outbreak, and can be seen as a primary measure of
the infectivity of the infectious agent considered. Recently the
speed at which the epidemic grows has attracted considerable
interest. Together with R0 the speed decides the possibilities to
control spread of an infection.

Experience indicates that the number of infected persons ini-
tially grows at a constant exponential rate, i.e. proportional to
expðrtÞ, where t is the time the spread has been going on in the
population. The increase will slow down as the number of infected
and immune in the population grows. Theoretically the exponen-
tial behavior, in the start, is a consequence of that an epidemic,
in the initial phase, is well approximated by a branching process.
Branching processes have been studied for long and much is
known of their behavior cf e.g. [1]. The parameter r is often referred
to as the Malthusian parameter. A relation between R0 and r, which
depends on the generation time distribution, is given by the Euler–
Lotka equation (cf Section 3). A discussion of generation time dis-
tributions, the basic reproduction number and the Malthusian
parameter in epidemic models can be found in [2].

The epidemic curve describes how the number of infected per-
sons grows with time. The purpose of this paper is to suggest
methods to derive estimates of both the basic reproduction num-
ber and the Malthusian parameter based on possibly partial obser-
vations of the epidemic curve. As regard estimates of r simple
methods have been suggested that are restricted to using data
from periods where the branching process approximation is appli-
cable (see Section 2). In order to use the information contained in
longer sections of the epidemic curve we will use assumptions on
the generation time distribution.

The analysis is based on a class of simple models defined in Sec-
tion 3. We will consider spread in a closed population with n per-
sons in which infections are transmitted according to
homogeneous mixing, i.e., when a transmission occurs the new in-
fected is a susceptible member of the population chosen uniformly
at random. The epidemic is started by one infected individual and a
person may only be infected once.

We will preferably use martingale estimators. Becker, [3,4],
gives a thorough introduction to martingale methods for estima-
tion of infection rates. Becker also derives estimates of R0, and their
standard deviations, for the standard SIR epidemic model. In par-
ticular he studies models where the infectious period is assumed
to be exponentially distributed. This assumption makes it possible
to derive estimates that depend on the number of removed per-
sons. He also considers models with other types of mixing.

In Section 4 we assume that each infected person is infectious
during a fixed time interval. We derive the generation time distri-
bution and find a relation between the basic reproduction number
and the Malthusian parameter using the Euler–Lotka equation.
With this assumption it is possible, knowing the epidemic curve,
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to calculate, at each time, the number of infectious persons. Using
this we can define estimators of R0 and r and derive their asymp-
totic properties. Using theoretical results and simulations we illus-
trate, what is gained by using this martingale estimator. In this
special case we can also derive, as an alternative, Maximum Likeli-
hood estimators.

The simple model with a fixed infectious period is used to illus-
trate the methods. In Section 5 more complicated generation time
distributions are considered and it is illustrated how the estima-
tion method can be generalized.

2. Estimates of the growth rate based on the initial phase of the
epidemic

As pointed out in the introduction the number of infections
grows initially proportional to expðrtÞ. Eventually the progress
slows down, when a substantial proportion of the population is in-
fected and therefore immune.

An obvious, and often used idea, (see e.g. [5]), is to use observa-
tions from the initial part of the epidemic to estimate r. Denote the
(counting) process of infected individuals by fNnðtÞ; t P 0g, with
Nnð0Þ ¼ 0 where the subindex n refers to the size of initially sus-
ceptible population. If we observe Nn at times t1 and t2 we have

~rsimple ¼
logfNnðt2Þ=Nnðt1Þg

t2 � t1
ð2:1Þ

This estimate will degenerate if the branching process approxi-
mation is not appropriate in at least one of the observation times. If
this is the case may e.g. be judged by a simple inspection of the epi-
demic curve. Another possibility is to use a statistical test to see if
the progress is slowing down. Such a method is suggested in [6].
Methods of this kind have the advantage that they do not use
any assumptions of anything else than the initial part of the epi-
demic curve.

The alternative methods that are discussed in the remainder of
this paper use data also from times when the growth of the epi-
demic has slowed down but require the use of assumptions on
the generation time distribution.

3. Basic model and the Euler–Lotka equation

We introduce one infectious individual in a closed, homoge-
neously mixing, population of n susceptible individuals. All indi-
viduals make contact with other particular individuals according
to independent Poisson processes with rate a

n. Let Y be the length
of the time interval during which an infected person is infectious.
The infectious time may be proceeded by a latent time, with length
X, during which the infection is not transmitted. In general both
these times may be individually random.

Each infected individual has a random number of potentially
contagious contacts. We denote this number by n. Now, given the
length of the infectious time, n is Poisson distributed with param-
eter aY .

The basic reproduction number is given by R0 ¼ E½n� ¼ aEðYÞ. A
large epidemic outbreak is possible exactly when R0 > 1. Let sn de-
note the final proportion infected individuals after a large epidemic
outbreak, i.e. sn ¼ Nnð1Þ=n. It is well known that sn converges in
probability to s as n!1, where s is the solution to the equation
(see e.g. [7])

1� s ¼ e�sR0 ; ð3:1Þ

or equivalently

� logð1� sÞ ¼ Ros

The generation time distribution is defined by the density

gðtÞ ¼ PðX 6 t < X þ YÞ
EðYÞ ¼ PðX þ Y > tÞ � PðX > tÞ

EðYÞ : ð3:2Þ

(cf [2]).
Let

hðrÞ ¼
Z 1

0
e�rtPðX < t 6 X þ YÞdt: ð3:3Þ

The Euler–Lotka equation which has the Malthusian parameter, r, as
a solution can be written as

1 ¼ R0

Z 1

0
e�rtgðtÞdt ¼ ahðrÞ: ð3:4Þ

From Eq. (3.1) we observe that there is a one-to-one relation be-
tween a and the final size s. Since (3.4) implies that there is a
one-to-one relation between a and r there is also a relation between
r and the final size:

� logð1� sÞ ¼ sEðYÞ=hðrÞ: ð3:5Þ

4. Simple model

To illustrate how estimates of a and r can be derived we will
study an extremely simple model that allows us to highlight main
points of the analysis. In Section 5 we will discuss how the meth-
ods can be extended to more complicated models. For the moment
we will assume that there is no latent time and that the infectious
time Y is nonrandom and covers one time unit.

Let Nn be as defined in Section 2. At time t an infectious individ-
ual spreads the disease at the rate a

n ðn� Nnðt�ÞÞ ¼ að1� Nnðt�Þ=nÞ
where ð1� Nnðt�Þ=nÞ is the proportion of susceptible individuals
in the population. The number of infectious individuals at time t
is IðtÞ ¼ ðNnðt�Þ � Nnððt � 1Þ _ 0Þ þ 1ð0;1�, where 1ð0;1� is the contri-
bution of the initial infected. Thus the total infectious pressure in
the population at time t is aknðtÞ where

knðtÞ ¼ ð1� Nnðt�Þ=nÞIðtÞ;

This model is a S (Susceptibles)-I (Infectious)-R (Removed)
model with

SðtÞ ¼ n� Nnðt�Þ
IðtÞ ¼ Nnðt�Þ � Nnððt � 1Þ _ 0Þ þ 1ð0;1�
RðtÞ ¼ Nnððt � 1Þ _ 0Þ þ 1ð1;1�:

Observe that this epidemic process is completely specified by
the process Nn. It is possible to derive estimates of a and the Mal-
thusian parameter observing only the process Nn. This is the reason
why we choose to investigate this model first.

In this simple model R0 ¼ a and

hðrÞ ¼
Z 1

0
e�rtdt ¼ 1� e�r

r
ð4:1Þ

According to Eq. (3.4),

R0 ¼ a ¼ r
1� e�r

: ð4:2Þ

We will first estimate a and then use the relation (4.2) to obtain an
estimate of r.

4.1. Inference

We will start by defining and analyzing the properties of an
estimate of the contact intensity a. The discussion uses the
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