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a b s t r a c t

Some genes or gene complexes are transmitted from parents to offspring at a greater-than-Mendelian
rate, and can spread and persist in populations even if they cause some harm to the individuals carrying
them. Such genes may be useful for controlling populations or species that are harmful. Driving-Y
chromosomes may be particularly potent in this regard, as they produce a male-biased sex ratio that,
if sufficiently extreme, can lead to population elimination. To better understand the potential of such
genes to spread over a landscape, we have developed a series of reaction–diffusion models of a driving-Y
chromosome in 1-D and radially-symmetric 2-D unbounded domains. The wild-type system at carrying
capacity is found to be unstable to the introduction of driving-Y males for all models investigated.
Numerical solutions exhibit travellingwavepulses and fronts, and analytical and semi-analytical solutions
for the asymptotic wave speed under bounded initial conditions are derived. The driving-Y male invades
the wild-type equilibrium state at the front of the wave and completely replaces the wild-type males,
leaving behind, at the tail of the wave, a reduced- or zero-population state of females and driving-Ymales
only. In our simplest model of a population with one life stage and density-dependent mortality, wave
speed depends on the strength of drive and the diffusion rate of Y-drive males, and is independent of
the population dynamic consequences (suppression or elimination). Incorporating an immobile juvenile
stage of fixed duration into the model reduces wave speed approximately in proportion to the relative
time spent as a juvenile. If femalesmate just once in their life, storing sperm for subsequent reproduction,
then wave speed depends on the movement of mated females as well as Y-drive males, andmay be faster
or slower than in the multiple-mating model, depending on the relative duration of juvenile and adult
life stages. Numerical solutions are shown for parameter values that may in part be representative for
Anopheles gambiae, the primary vector of malaria in sub-Saharan Africa.

© 2015 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Many selfish genetic elements are able to spread and persist in
populations not because they increase the survival or reproduc-
tion of individuals carrying them, but because they contrive to bias
their transmission from parents to offspring above the Mendelian
norm (Burt and Trivers, 2006; Werren, 2011). This phenomenon is
often called gene drive, and examples of such genes include ga-
mete killers, meiotic drivers, B chromosomes, transposable ele-
ments, and homing endonuclease genes. Because they can spread
through populations even if they cause some harm to the organ-
ism, gene drive systems may be useful as tools to help control pest
populations (Sinkins and Gould, 2006; Alphey, 2014; Burt, 2014).
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Amongst the first selfish genes to be investigated for popula-
tion control was the driving-Y chromosome (or, more precisely,
male determining region) found naturally in some Aedes aegypti
mosquito populations, which in some crosses is transmitted to
more than 90% of progeny, the vastmajority being sons (Craig et al.,
1960; Hickey and Craig, 1966a,b). Such a gene might be expected
to increase in frequency, rendering the entire population male-
biased, which in turn could lead to suppression or even elimina-
tion (Hamilton, 1967). It turned out that most populations with
the driving-Y also have resistant alleles, and sex ratios in nature
are not severely biased (Wood and Newton, 1991). A similar phe-
nomenon has been observed in Culex pipiens mosquitoes (Sweeny
and Barr, 1978), but otherwise Y drive has rarely been reported
from nature (Helleu et al., 2015). In mosquitoes, Y drive occurs be-
cause the development of X-bearing sperm is somehow disrupted;
the molecular details are currently unknown, but cytological ob-
servations show that it is associated with breakage of the X chro-
mosome during male meiosis (Newton et al., 1976). Recently, it
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has been demonstrated in Anopheles gambiae mosquitoes that a
synthetic gene construct that expresses an enzyme that specifi-
cally cleaves the X chromosome during male meiosis results in the
Y chromosome being transmitted to up to 95% of progeny (Galizi
et al., 2014). In principle, inserting such a construct onto the Y chro-
mosome could result in a synthetic driving-Y.

Models of random-mating populations have shown that a
driving-Y chromosome can invade a population from an arbitrar-
ily low frequency (i.e., there is no invasion threshold); that if
it increases from low frequency it will go to fixation, replacing
the non-driving-Y (i.e., simple models do not allow a stable in-
termediate equilibrium frequency); and that the population will
be eliminated if the male bias is sufficiently extreme (Hamilton,
1967; Clark, 1987; Deredec et al., 2008, 2011). The dynamics of
a driving-Y in spatially structured populations has been much
less studied (Hamilton, 1967). North et al. (2013) used individual-
based simulations of mosquitoes, each with an explicit location
on a landscape, and showed it was still possible to get population
elimination with a driving-Y.

Reaction–diffusion equations have been widely used to model
biological invasions, both for beneficial mutations replacing a
wild-type allele and for species invading a landscape (Fisher, 1937;
Kolmogorov et al., 1937; Skellam, 1951; Andow et al., 1990; Shige-
sada and Kawasaki, 1997; Hastings et al., 2005). In these models
a sufficiently localized initial condition can evolve into a travel-
ling waveform that propagates with an asymptotically constant
velocity. The wave connects a stable equilibrium state (at the tail
of the wave, where the mutant gene has completely replaced the
wild-type gene, or species abundance has gone to its carrying ca-
pacity) with an unstable state (at the tip of the wave, with the
mutation or species absent). These methods have also been used
to model the spread of maternally inherited Wolbachia bacteria
that cause cytoplasmic incompatibility, in which case complex dy-
namics such as bifurcation, threshold, and Bartonian waves have
been identified (Turelli and Hoffmann, 1991; Schofield, 2002; Bar-
ton and Turelli, 2011). Reaction–diffusion equations have also been
used to model the sterile insect release method and exhibit travel-
ling extinction waves (Lewis and van den Driessche, 1993).

In this paper, we apply reaction–diffusion equations to model
the spatial spread of a driving-Y chromosome causing a population
crash, and investigate how its spread through the population is
affected by the dynamics of population suppression or extinction.
In Section 2, we describe the mathematical approach that we use
to analyse our systems of partial differential equations and delay
PDEs. A series of models is then presented with successively more
complex life histories: a one life-stage basic model (Section 3.1);
a two life-stage model with immobile juveniles (Section 3.2); and
the most complex model for which females mate once only at a
male density-dependent rate (Section 3.3). These enhancements
add significantly more complexity compared to the Fisher–KPP
equation: time delay, up to seven dependent variables, differences
in dispersal rate for different types, and an Allee effect. For each
model, we calculate travelling waveform solutions and the linear
spreading velocity of the travelling waves under bounded initial
conditions. In Section 4, we extend the most complex model to
two dimensions and apply it to the spatial spread of a driving-Y
chromosome in An. gambiae mosquito populations, calculating
wave speed and other characteristics that are useful in designing
release strategies for disease control. In Section 5, we compare
results for different models and implications for pest eradication
strategies and discussmodel assumptions and possible extensions.

2. Mathematical approach

Wemodel the release of driving-Ymales into awild-type popu-
lation using a series of deterministic, nonlinear reaction–diffusion

PDEs and delay PDEs of the form:

∂U(x, t)
∂t

= D·
∂2U(x, t)

∂x2
+ f


U(x, t),U(x, t − TJ)


(1)

where the vector U(x, t) represents the population densities and
other dependent variables. Dispersal is based on a local random
movement of individuals through space, with the population den-
sity flux governed by Fick’s first law. We allow different diffusivi-
ties for the various types (driving-Y and wild-type males, females)
so that we can investigate the role of each in dispersal, where
D = diag[[Di]] is the diagonal diffusivity matrix with Di denoting
the diffusivity for type i. We model an unbounded, homogeneous
domain in one spatial dimension for simplicity, although the re-
sults are extended to two spatial dimensions (radially-symmetric)
in Section 4. The vector function f


U(x, t),U(x, t − TJ)


repre-

sents the non-linear growth and death terms, and models with
two life stages include a time delay TJ due to the immobile juve-
nile stage. The homogeneous equilibrium states of (1), Ueq, are the
non-negative solutions of f


U(x, t) = Ueq,U(x, t − TJ) = Ueq


=

0, equivalent to setting the spatial and time derivatives in (1) to
zero.

We introduce the driving-Y male into the homogeneous
wild-type equilibrium state U0 = {U01, . . . ,U0n}, where n is the
number of different types or dependent variables (up to seven).
For each model, we calculate the full numerical solution of the
non-linear PDEs (1) using the Method of Lines, combined with
the Method of Steps for models with time delay (Bellen and
Zennaro, 2003). We show that travelling population density waves
are established that connect U0 at the tip of the wave with an
equilibrium state U1 = {U11, . . . ,U1n} behind the wave.

We now describe how we calculate the linear stability of
the equilibrium states and derive analytical and semi-analytical
expressions for the asymptotic wave speed by linearizing (1)
around the relevant equilibrium state. We consider bounded
perturbations of the dependent variables U(x, t) around U0 =

{U01, . . . ,U0n}. For models with time delay TJ ≠ 0, we need
to consider displacements from equilibrium that persist over an
interval of at least the longest time delay, which in our system is
TJ . We thus introduce localized (bounded in space) perturbations
of U(x, t) from its equilibrium value U0 both at times t and t − TJ :

δU(x, t) = U(x, t) − U0 and δU(x, t − TJ) = U(x, t − TJ) − U0.

We then linearize the system of Eqs. (1), recognizing that f (U0) =

0 (since at equilibrium the growth and death terms are balanced),
to obtain:

∂ δU(x, t)
∂t

= D·
∂2δU(x, t)

∂x2

+ J0·δU(x, t) + JTJ ·δU(x, t − TJ) (2)

where the two Jacobian matrices J0 = [[
∂ fi

∂Uj(x,t)
]] and JTJ =

[[
∂ fi

∂Uj(x,t−TJ )
]] are both calculated at the equilibrium point U0.

We now introduce the spatial Fourier transform and temporal
Laplace transform of the dependent variables, with δU(k, t) rep-
resenting the spatial Fourier transformed variables and δU(k, ω)
representing the doubly-transformed variables, defined below for
k ∈ C and ω ∈ C:

δU(k, ω) =


∞

0
eiωt δU(k, t)dt

=
1

√
2π


∞

0


∞

−∞

e−ikx+iωtδU(x, t)dx dt.
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