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The potential of bioacoustics in estimating the population density of insect pests inside the stored grain
mass was evaluated in the laboratory. We used a piezoelectric sensor and a portable acoustic emission
amplifier connected to a computer for recording acoustic emissions of insects. The software analyses the
vibration recordings of the piezoelectric sensor, performs signal parameterization and eventually clas-
sification of the infestation severity inside the grain mass in four classes, namely: Class A (densities <1
adult/kgr), Class B (densities 1—2 adults/kgr), Class C (densities 2—10 adults/kgr) and Class D (densities
>10 adults/kgr). Adults of the most important beetle pests of stored cereals and pulses, in various
population densities (1, 2, 10, 20, 50, 100, 200 & 500 beetle adults/kgr grain) were used during the
present study. The linear model was very effective in describing the relationship between population
density and number of sounds. Multiple classifiers were used to evaluate the accuracy of bioacoustics on
predicting the pest density given per minute counts of vibration pulses. Based on our results, our sys-
tem's performance was very satisfactory in most cases (~68%) given that probabilities for successful
prediction typically exceeding 70%. Our study suggests that automatic monitoring of infestations in bulk
grain is feasible in small containers. This kind of service can assist with reliable decision making if it can
be transferred to larger storage establishments (e.g. silos). Our results are discussed on the basis of

enhancing the use of acoustic sensors as a decision support system in stored product [PM.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

More than 500 species of beetles have been reported to be
associated with various stored grain products (cereals and pulses)
and almost 100 of them may cause significant quantitative or
qualitative losses. It has been estimated that between one quarter
and one third of the world grain crop is lost each year during
storage (Sarwar, 2015). The key for successful management of
stored grain pests is not only early detection, but also an accurate
population density estimation of the pest (Boxall, 1991; Rajendran,
1999, 2005, 2002).

Many methods have been developed today for the detection and
monitoring of stored grain pests: visual inspection, trapping, sam-
pling & sieving, heat-extraction, acoustic sensors and imaging
techniques. High cost, limited capacity, intensive labour, time
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consuming, safety issues and low accuracy are the most important
disadvantages that hinder the commercialization and large scale
use of these methods by the grain industry (Fleurat-Lessard, 2011;
Neethirajan et al., 2007; Rajendran, 2005). The most widely used
and commercialized processes are sieving samples or the use of
Berlese funnels (Neethirajan et al., 2007). Problems with these
methods are that they are time consuming, have low accuracy and
collect only 30—70% of insects in the grain samples (Minkevich
et al,, 2002).

Acoustic detection is a very promising method for early detec-
tion of insects inside the grain mass (Eliopoulos et al., 2015;
Hagstrum et al., 1996; Mankin et al., 2011; Potamitis et al., 2009
and others). Insects of stored grain generate sound by eating,
flying, egg laying, or locomotion. Reliability and efficacy of acoustic
sensors has greatly increased in the last few years as a result of the
development of improved acoustic devices and signal processing
methods (Mankin et al., 2011). Apart from detection, very few
studies have evaluated the potential of the acoustic method in
estimating the population density of the pest inside the grain mass
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(Hagstrum et al., 1988, 1990).

Despite some increase in interest in recent years in bioacoustic
signal processing of insect emissions (Mankin et al., 2008a), the
combined applicability of signal processing and machine learning
techniques to the problem of automatic insect detection and cate-
gorization is still in its infancy (Ganchev and Potamitis, 2007;
Gaston and O'Neill, 2004; Mankin et al., 2008b; Potamitis et al.,
2009). The efficacy of acoustic devices in detecting cryptic insects
depends on many factors, including the sensor type and frequency
range, the substrate structure, the interface between the sensor and
the substrate, the temperature, the insect species and develop-
mental stage, the assessment duration, the size and behavior of the
insect, and the distance between the insects and the sensors
(Mankin et al., 2011).

The aim of our study is to evaluate an automated monitoring
procedure for IPM implementation in grain handling and storing
facilities. The main unit is composed of a piezoelectric sensor and a
portable acoustic emission amplifier connected to a computer. The
software analyses the vibration recordings of the piezoelectric
sensor, performs signal parameterization and eventually classifi-
cation of the infestation severity of adult beetles inside the grain
mass in four classes. Our results are discussed on the basis of
enhancing the use of acoustic sensors as a decision support system
in stored product IPM.

2. Materials and methods
2.1. Experimental insects

For the purposes of our study, we used adults from the most
important beetle pests of stored cereals and pulses (Mason and
McDonough, 2012; Rees, 2004) We used the grain that each spe-
cies is most commonly associated with in natural conditions. Spe-
cifically, we recorded acoustic emissions of the rice weevil
Sitophilus oryzae (L.) (Curculionidae), the lesser grain borer Rhyzo-
pertha dominica (F.) (Bostrichidae), the confused flour beetle Tri-
bolium confusum Jacquelin du Val (Tenebrionidae), the sawtoothed
grain beetle Oryzaephilus surinamensis (L.) (Silvanidae), the rusty
grain beetle Cryptolestes ferrugineus (Stephens) (Laemophloeidae),
the cigarette beetle Lasioderma serricorne (Anobiidae) on wheat
Triticum spp. L. and maize Zea mays L. (Poales: Poaceae), the larger
grain borer Prostephanus truncatus (Horn) (Bostrichidae) on maize,
the bean weevil Acanthoscelides obtectus (Say) (Bruchidae) on kid-
ney beans Phaseolus vulgaris L. and butter (giant) beans P. coccineus
L. (Fabales: Fabaceae) and the cowpea weevil Callosobruchus mac-
ulatus (F.) (Bruchidae) on broad (fava) beans Vicia faba L. (Fabales:
Fabaceae).

All experimental species were kept in cultures in large glass jars
(2 It). Most species were reared on the grain where they were
tested, except O. surinamensis and C. ferrugineus that were reared on
a mixture of broken wheat: rolled oats: dried yeast (5:5:1), and T.
confusum and L. serricorne that were reared on whole wheat flour
(with 10% dried yeast) (Miller et al., 1969). All insect cultures were
kept in environmental chambers under controlled conditions
(25 °C, 60% R.H. and 16:8 L:D).

2.2. System description

Our system was adopted from Eliopoulos et al. (2015) and
consisted of a 14 cm long piezoelectric sensor mounted on the end
of a probe that was pushed into the grain (hard wheat) and a
portable acoustic emission amplifier (AED-2010L, Acoustic Emis-
sion Consulting, Inc., Fair Oaks, CA) connected to a computer. The
experimental procedure (grain preparation, recording methodol-
ogy etc) is described in detail by Eliopoulos et al. (2015). Each of

the 16 different treatments (recording of the desired species and
number of adults in the desired grain mass) was replicated five
times. Recordings from uninfested grain was used as a control.

2.3. Classification

Various infestation densities were tested during the present
study (1, 2, 10, 20, 50, 100, 200 & 500 beetle adults/kgr grain). We
proceeded by inserting the piezoelectric probe and taking 5 re-
cordings per jar. We grouped insects' density in four distinct clas-
ses: Class A (densities <1 adult/kgr), Class B (densities 1—2 adults/
kgr), Class C (densities 2—10 adults/kgr) and Class D (densities >10
adults/kgr). We applied supervised learning techniques to our
dataset as we know the class labels (i.e. we set the infestation
densities). During the operational phase, we first take a recording of
the test jar and we subsequently derive the counts/min encoun-
tered in the recordings. Given the counts/min of the unknown test
jar the classification algorithm predicts the Class (i.e. severity) of
the infestation.

We had multiple choices on which specific learning algorithm
we could use. This work did not aim to develop new classifiers nor
did it aim to maximize classification through combinations of
classifiers. It is interdisciplinary research exploiting the synergy of
entomology, electronics and data analysis that results into an
automated monitoring process. Therefore, we employed a variety of
well-established classifiers that serve as standards in pattern
recognition research: KNeighbors Classifier, Linear Support Vector
Classification (SVC), Radial Basis Function (RBF) kernel SVM, a De-
cision tree (DecisionTreeClassifier), an aggregation of decision trees
(RandomForestClassifier), = AdaBoostClassifier = meta-estimator,
Gaussian Naive Bayes (GaussianNB) (Pedregosa et al., 2011). In
operational mode, the computer receives a vibration recording
from the sensor which turns into counts of enumerated pulses
(counts/min). From these counts/min, it infers the distribution of
probabilities over infestation severity classes A—D. By finding the
maximum of the probability distribution (i.e. the most probable
class) the algorithm can output a single decision. The classifier
evaluation is based on prediction accuracy (the percentage of cor-
rect prediction of Classes A—D divided by the total number of
predictions). In order to assess classifier's accuracy, we split the
dataset into two mutually exclusive sets: (1) the training set to tune
the classifier and (2) the validation set for estimating its perfor-
mance. Our validation approach is called ‘Leave-one-out validation
scheme’ and is a special case of cross validation partitioning. The
training set is the whole dataset except one randomly selected case.
The single hold-out instance is used to assess classifier's perfor-
mance and the leave-one-out validation scheme is repeated for all
instances of the dataset in-turn. The single hold-out instance is
used to assess classifier's performance. This Leave-one-out itera-
tion-validation scheme is repeated for all instances of the dataset
in-turn. The average of the error rate of each test instance is
therefore an estimate of the error rate of the classifier. We have
chosen this validation, which is more expensive computationally,
as the proper action to take when the dataset is small, as in our
study.

All aforementioned classification algorithms can output a direct
probability or a score that can be implicitly converted to a proba-
bility (e.g. in the case of Support vector machines-SVM) of each test
instance belonging to each of the 4 classes. In Fig. 1 we show a case
of expected output of a Random Forest directly classifying the
counts of the vibration sensor. The procedure is as follows: a) Re-
cord for a sufficient period of time. The counts are turned to counts/
minute regardless of the recording time. We used a minimum of
1 min of recording after 5 min of inserting the sensor in the bulk
grain, b) input the recording to the counting algorithm (Eliopoulos
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