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s u m m a r y

This paper examines the combination of support vector machines (SVM) and the dual ensemble Kalman
filter (EnKF) technique to estimate root zone soil moisture at different soil layers up to 100 cm depth.
Multiple experiments are conducted in a data rich environment to construct and validate the SVM model
and to explore the effectiveness and robustness of the EnKF technique. It was observed that the perfor-
mance of SVM relies more on the initial length of training set than other factors (e.g., cost function,
regularization parameter, and kernel parameters). The dual EnKF technique proved to be efficient to
improve SVM with observed data either at each time step or at a flexible time steps. The EnKF technique
can reach its maximum efficiency when the updating ensemble size approaches a certain threshold. It
was observed that the SVM model performance for the multi-layer soil moisture estimation can be
influenced by the rainfall magnitude (e.g., dry and wet spells).

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Soil moisture is a key hydrologic state variable that controls the
land surface and biophysical processes, as well as atmospheric
exchanges of sensible and latent heat (Castelli et al., 1999; Boni
et al., 2001; Sun et al., 2011; Ridler et al., 2014). On a catchment
scale, soil moisture controls the partitioning of rainfall into runoff
and infiltration—thus impacting both groundwater recharge and
river discharge (Moradkhani, 2008; Ni-Meister, 2008). For water
resource managers, improved soil moisture estimates can improve
agricultural water management, drought and flood forecasting
(Milly et al., 2008). However, it is challenging to accurately
estimate soil moisture that varies in depth, space and time.

Currently, soil moisture can be obtained by in situ networks,
hydrological modeling and/or remote sensing techniques and each
method has some limitations. The in situ networks are expensive
and impractical for large areas, whereas hydrological modeling
are uncertain due to poorly described model physics, imperfect
parameterization, meteorological forcing data, and initial condi-
tions. Developments in remotely sensed soil moisture retrievals
(e.g., Advanced Microwave Scanning Radiometer (AMSR-E)
(Njoku et al., 2003), Soil Moisture Ocean Salinity Satellite (SMOS)
(Kerr et al., 2010), Soil Moisture Active Passive (SMAP)
(Entekhabi et al., 2010)) can provide an unprecedented spatial

and temporal resolution of soil moisture data across a range of
scales, but is limited in terms of sensing at different depth. Some
efforts have been done to retrieve root zone soil moisture profile
from the surface values (Li et al., 2012; Tran et al., 2013; Ridler
et al., 2014), but these studies often encountered obstacles, includ-
ing the hydraulic parameterization, initial moisture condition,
satellite measurement accuracy and the spatial and temporal
scales (Vereecken et al., 2008; Montzka et al., 2011).

Data assimilation (DA) technique is considered to be a promis-
ing technique to optimally estimate the soil moisture by merging
observed information into models (e.g., Kumar et al., 2008; Lu
et al., 2010; Das et al., 2011; Li et al., 2012; Tran et al., 2013;
Han et al., 2014; Kornelsen and Coulibaly, 2014; Yin et al., 2015).
The integration of surface soil moisture measurements into a
hydrological model through DA has proven a promising approach
to predict root-zone soil moisture (Walker et al., 2001; Das and
Mohanty, 2006; Lu et al., 2010; Dumedah and Coulibaly, 2012;
Yu et al., 2012; Han et al., 2014; Mishra et al., 2015). However,
the evolutionary DA technique often exhibits a high computational
cost due to the multi-objective evolutionary search strategy
(Dumedah and Coulibaly, 2012). For instance, (Clark et al., 2008)
found that the EnKF-based approach is not only computationally
demanding but also has strong limitations for nonlinear systems.

Data-driven methods, such as support vector machines (SVMs),
which can mine data for nonlinear interdependencies and have
potential for estimating root zone soil moisture with prior
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atmospheric observations (e.g. solar radiation, relative humidity,
air temperature) and hydrologic observations (e.g. soil tempera-
ture, soil moisture), therefore, can serve as a simple alternative
technique to hydrological models. For soil moisture estimation,
the SVMs are found to be efficient in both the training and estimat-
ing processes (e.g., Gill et al., 2006; Gill and McKee, 2007). Other
uses of SVM can be found in (Kaheil et al., 2008; Liu et al., 2010).

As stated in previous literatures (e.g., Evensen, 2003; Samuel
et al., 2014), ensemble Kalman filter (EnKF) technique uses statis-
tical distributions to represent uncertainties of both observations
and model errors and to generate ensembles of model forcing
and other variables. In the forecast step, an ensemble of model
states is propagated forward in time using the model. As a result,
the accuracy of the sampled covariance depends on the ensemble
size (Kumar et al., 2008). However, the approach to determine
the ensemble size is usually limited by high computational costs.
Thus, a large group of experiments are designed in this paper.

This paper aims to develop a multilayer soil moisture estima-
tion model using a combination of SVM and a sequential DA
method known as EnKF technique. The data used in this study is
from the Blackville experiment site located in South Carolina of
United States. The remainder of this paper is organized as follows.
Study area and data is described in Section 2. The SVM and EnKF
technique is introduced in Section 3. The experimental design,
including the prior data analysis, SVM construction and validation
experiments, the EnKF updating experiments as well as the evalu-
ation criteria are illustrated in Section 4. The results from each
experiment are analyzed in Section 5, while the discussions and
conclusions are summarized in Section 6.

2. Study area and data

Blackville experimental site (latitude 33�2101800, longitude
81�1904000, elevation 317 ft) is located in South Carolina, United
States. In addition to the real time sensor based soil moisture mon-
itoring station, this site also includes a state of the art NOAA U.S.
Climate Reference Network station (SC_Blackville_3W) with auto-
mated measurements of air temperature, humidity, solar radiation,
rainfall, soil temperature and moisture at different soil depth from
5 to 100 cm. Besides, it provides the opportunity to study a variety
of crops (i.e., Cotton, Corn, Wheat, Soybean, Peanut, and Sorghum)
and to develop drought indices for individual crops based on their
water demand.

The daily time series data includes the maximum, minimum,
mean and average air temperature (named as t_max, t_min,
t_mean, t_avg), daily precipitation (P), total solar energy (SR), max-
imum, minimum and average infrared surface temperature
(named assur_temp_max, sur_temp_min and sur_temp_avg), max-
imum, minimum and average relative humidity (named as rh_max,
rh_min and rh_avg), soil moisture at 5 cm, 10 cm, 20 cm, 50 cm
and 100 cm depth (named as SM1, SM2, SM3, SM4 and SM5) and
soil temperature at 5 cm, 10 cm, 20 cm, 50 cm and 100 cm depth
(named as ST1, ST2, ST3, ST4 and ST5). The daily data between
1st September 2009 and 31st May 2015 (totally 2099 days) was
obtained from the U.S. Climate Reference Network (USCRN)
(https://www.ncdc.noaa.gov/crn/qcdatasets.html). The USCRN use
high-quality instruments to measure temperature, precipitation,
wind speed, soil conditions, and more.

3. Methodology

3.1. Support vector machines (SVMs)

The SVM was applied to estimate the soil moisture at different
soil layers from surface to root zone. As described in previous

literatures (Liu et al., 2010), the algorithm of SVM maps the input
space in a high-dimensional feature space by utilizing kernels
(Vapnik, 1995). SVM regression estimation generally involves the
following training: (1) selection of a suitable kernel and kernel
parameter, (2) specifying the penalty parameter, and (3) specifying
the insensitive parameter. Since SVMs are inherently deterministic
models, the evaluation of confidence bounds is a difficult but
necessary task. In this paper, the SVM model was implemented
using the concept provided by De Brabanter et al. (2010).

3.2. Ensemble Kalman filter (EnKF)

The EnKF is a popular DA technique used in hydrology (Gill and
McKee, 2007; Liu et al., 2010; Leisenring and Moradkhani, 2012;
Yin et al., 2014, 2015; Mishra et al., 2015). It is a Monte Carlo
approximation of a sequential Bayesian filtering process, which
alternates between an ensemble forecast step and a state variable
update step (Reichle et al., 2002). The dual EnKF technique is
adopted in this paper consists of two steps: generating an ensem-
ble of model outputs and updating it when new observations
become available. The differential equations for the generic nonlin-
ear dynamic system are formulated as follows (Reichle et al., 2002;
Leisenring and Moradkhani, 2012):

Xt ¼ F Xt�1;Ut ; htð Þ þWt ð1Þ

Yt ¼ H Xtð Þ þ Vt ð2Þ
where F(�) is the model operator mapping the previous state Xt�1 at
time t � 1 to state Xt at time t; H(�) is the observation operator that
converts state to observation; Here Xt is a vector of the uncertain
state variable at time t, while Yt is a vector of the measurement at
time t. Ut is a vector of uncertain forcing inputs while ht is vector
of the model parameters at time t. Wt represents the model errors
while Vt is the measurement error. In most cases, Wt and Vt are
assumed as independent and white noises with mean zero and
covariance respectively for the state vector and measurement
vector.

In general, the dual EnKF requires two separate state-space
representation for the state and parameters through two interac-
tive filters by updating model parameters and model states. In
the study, model parameters are first updated and then states.
The simulation results from each step are considered separately.
The detailed procedure for the dual EnKF can be referred to
(Samuel et al., 2014).

4. Experimental design

The dual EnKF technique is applied to determine additional
improvements that can be obtained to update the SVM for soil
moisture estimation. Multiple experiments are designed to
construct and validate the SVM model; then additional experi-
ments are conducted to examine the effectiveness and robustness
of EnKF technique to improve the performance of SVM.

4.1. Preliminary data analysis

It is well known that the soil moisture can be estimated using
low-level atmospheric and meteorological inputs (Mahfouf, 1991;
Gill and McKee, 2007; Yu et al., 2012). Many previous studies
(e.g., Koster et al., 2004, 2006; Cook et al., 2006; Liu et al., 2014b)
indicated the importance of soil moisture during the process of
land–atmosphere interactions. The changes of soil moisture would
lead to a chain of reactions, including changes of albedo, net radi-
ation, latent heat flux, sensible heat flux, boundary layer heat and
moist static energy density.
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