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s u m m a r y

Because the widely used Bayesian change point analysis (BCPA) is generally applied to the normal distri-
bution, it cannot be freely used to the annual maximum precipitations (AMP) in South Korea. Therefore,
this study proposed the fused lasso penalty function to detect the change point of AMP which can be gen-
erally fitted by using the Generalized Extreme Value (GEV) distribution in South Korea. First, four numer-
ical experiments are conducted to compare the detection performances between BCPA and fused lasso
method. As a result, fused lasso shows the superiority of the data generated by GEV distribution having
skewness. The fused lasso method is applied to 63 weather stations in South Korea and then 17 stations
having any change points from BCPA and the GEV fused lasso are analyzed. Similar to the numerical anal-
yses, the GEV fused lasso method can delicately detect the change point of AMPs. After the change point,
the means of AMPs did not go back to the previous. Alternately, BCPA can be stated to find variation
points not change points because the means returned to their original values as time progressed.
Therefore, it can be concluded that the GEV fused lasso method detects the change points of non-
stationary AMPs of South Korea. This study can be extended to more extreme distributions for various
meteorological variables.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

The temporal variability of precipitation affects human societies
throughout the world. Therefore, it is important to obtain defini-
tive knowledge of the changes in the magnitude and frequency
of precipitation, especially for extreme events (Durrans and
Kirby, 2004). The magnitude and frequency of extreme rainfall
events have increased in several areas, such as Japan, India, Aus-
tralia (Iwashima and Yamamoto, 1993), China (Jiang et al., 2014),
Senegal (Sarr et al., 2013), UAE (Ouarda et al., 2014) and South
Korea (Jung et al., 2010; Sung et al., 2015). Moreover, climate
change is currently affecting precipitation patterns throughout
the world because higher average air temperatures result in higher
evaporation rates, higher water vapor contents and consequently
an accelerated hydrologic cycle (Menzel and Burger, 2002).

Many quantitative and non-stationary studies on temperature
and precipitation have recently been conducted to provide clear
evidences of climate change (Choi, 2004; Santos and Leite, 2009;
Choi and Park, 2010). In addition, trends in hydro-meteorological

data have been observed using various statistical methods
(Gleick, 1989; Lettenmaier and Gan, 1990; Lettenmaier et al.,
1994; McCabe and Hay, 1995; Lins and Slack, 1999; Douglas
et al., 2000; Wong et al., 2006; O’Brien and Burn, 2014; He et al.,
2015).

The trend analysis, one of the commonly used methods to
detect nonstationarity, is based on the linear regression model
(Visser and Molenaar, 1995; Haktanir and Citakglu, 2014). Because
the regression model uses time-dependent covariates as predictors
and projects the response variables via estimated regression coef-
ficients, the model can incorporate many possible factors, includ-
ing both climatological and geomorphological ones, for the
analysis of the nonstationarity (Jaiswal et al., 2015).

Due to the flexibility of linear regression model, numerous sta-
tistical methods have been developed. For example, Strupczewski
et al. (2001a, 2001b) and Strupczewski and Zdzisław (2001) pro-
posed several regression models using Maximum Likelihood (ML)
method. Katz et al. (2002) and Clarke (2002a, 2002b, 2002c)
applied a linear regression model in the Generalized Extreme Value
(GEV) distribution. Khaliq et al. (2006) gave several fruitful reviews
of frequency analyses for nonstationary hydro-meteorological
observations. However, it can be difficult to use the trend analysis
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stemming from the regression model to explain or detect an abrupt
change, or multiple abrupt changes, caused by site-specific compo-
nents or induced by climate change, because the regression model
typically assumes a smooth model (eg. a linear model). Villarini
et al. (2009) developed the nonparametric regression models,
called of generalized additive models for location, scale and shape
parameters (GAMLSS), for flood frequency analysis.

Abrupt changes are usually represented by change points,
which are moments of discontinuities in a stochastic process. In
hydrology and climatology, such abrupt changes have been empir-
ically detected (e.g. Chung et al., 2011), and Bayesian Change Point
Analysis (BCPA) is widely used (e.g. Sung et al., 2015). Under an
assumed model, BCPA provides the posterior distribution of the
occurrence of change points such that location and uncertainty of
change points are obtained simultaneously. In addition, through
the posterior distribution of parameters in the model, various
inferences of random quantity (eg. return level) are available.

In spite of their usefulness, most methods for BCPA are studied
within the normal distribution or Poisson distribution. In general,
BCPA is restricted to the pre-assumed probability model or likeli-
hood. If the likelihood is not fitted well, the result of BCPA can be
unreliable. BCPA should be carefully applied to estimate the high
return levels especially when the true underlying skewed distribu-
tion has thicker tail than normal distribution because BCPA can be
useful to the normal distributions whose skewness and kurtosis
are given zero. Hence a tail behavior of a heavy tailed distribution
is not explained by the normal distribution. In this reason, most of
probability model in extreme data analysis including Bayesian data
analysis assume the heavy tail distribution for likelihood (Coles
and Tawn, 1996; Stephenson and Tawn, 2004; Katz et al., 2002).
That is, the likelihood function used in BCPA is severely misspeci-
fied such that BCPA can fail to obtain reliable return level estimates
of extreme events in hydrological process. However, it is unknown
whether BCPA can estimate means and detect change points in
skewed and heavy tailed distribution.

Therefore, this paper focuses on the abrupt change detection
of mean-estimates of a skewed distribution with multiple change
points and claims that the BCPA also fails to detect change point
and estimate means. In addition this study proposes a fused lasso
method as an alternative to BCPA for extreme value distributions
having positive or negative skewness. The fused lasso, first
proposed by Tibshirani et al. (2005), is a regression model with
a penalty function which can detect change points of the means
of the normally distributed data. Furthermore, the fused lasso can
detect multiple change points simultaneously in the observed
data and can give a theoretically better estimator under regular-
ity conditions (Rinaldo, 2009). Therefore, this study extends this
fused lasso method to GEV distribution and shows the usefulness
of the fused lasso through several numerical simulations. This
study also applies the fused lasso to 6-h, 12-h, and 24-h annual
maximum precipitations (AMPs) of the 63 weather stations in
South Korea.

2. Methodology

The GEV distribution was found to be useful to fit the frequency
of AMPs of South Korea (Park et al., 2011). Therefore, this study
developed the GEV fused lasso method (described in Section 2.1)
to find change points of the AMPs series of 63 weather stations
in South Korea (see Fig. 1) to compare their performances for 6 h,
12 h, and 24 h AMPs. This study also compared two results from
the fused lasso and BCPA (described in Section 2.2). 17 weather
stations are selected, shown in Table 3, because they show any lin-
ear trends fromMK trend analysis, or any change points from BCPA
and fused lasso method.

2.1. Fused lasso method

2.1.1. GEV distribution with fused lasso penalty function
First, the ML method with constraints of parameters corre-

sponding to the change point analysis is described in this section.
For simplicity, a class of three parameter distributions with loca-
tion (l), scale (a) and shape (j) is considered. This class of distri-
bution is sufficiently large to cover most probability models used
in hydrology. The normal distribution belongs to a class of distribu-
tions with location and scale parameters; the Log-Pearson type III
(LP3), the GEV and the Generalized Pareto (GP) distributions
belong to a class of distributions with three parameters related
to their location, scale and shape. In these distributions,
f ð�;l;a;jÞ represents the Probability Density Function (PDF).
Assume that the nonstationary model has a location parameter
depending on time t (lt). Under the assumption that the observa-
tions xt for t = 1,..., n are independently distributed, the likelihood
function is defined by

Lðl;a;jÞ ¼
Yn
t¼1

f ðxt;lt ;a;jÞ ð1Þ

with l ¼ ðl1; . . . ;lnÞ. The maximizer of Eq. (1) with the constraint
on l1 ¼ l2 ¼ � � � ¼ ln is equal to the Maximum Likelihood Estima-
tor (MLE) in the stationary model, which is generally known as an
efficient estimator under some regularity conditions (Smith,
1985). With a different constraint on lt for t ¼ 1; . . . ;n, we obtain
other estimators by maximizing Eq. (1). Let l�

1 and l�
2 be unknown

true location parameters (l�
2 – l�

1). Suppose that s is a change point
such that lt ¼ l�

1 for 1 6 t 6 s� 1 and lt ¼ l�
2 for s 6 t 6 n, then

the MLE of ðl;a;jÞ is given by

ðl̂; â; ĵÞ ¼ argmax
l;a;j

Lðl;a;jÞ

subject to l1 ¼ � � � ¼ ls

lsþ1 ¼ � � � ¼ ln

ð2Þ

If ls is the unique change point, the conventional MLE ignoring
the change point cannot capture the changes of the mean such that
the performance of estimation may become poor. Without consid-
ering the change point, the naïve estimator can severely underes-
timate or overestimate forecasting (e.g., return level). Practically,
the statistical test is recommended to detect or monitor the
changes. CUSUM test is one of the most popular methods to detect
a change point (Sonali and Kumar, 2013; Whitcher et al., 2002).
The CUSUM test was originally developed for statistical quality
control in production process (Page, 1954). Using the test, we can
estimate the parameters via two steps: (1) detection of change
points and (2) estimation of parameters with reflecting the change
of probability models. For example, we estimate the change point ŝ
by the CUSUM test and obtain the final estimator of l by maximiz-
ing (2). As an alternative method, we can consider a regularized
regression method, which has been widely and deeply studied in
fields of statistics and computer science.

The distribution of the extreme event with maximum value is
expected to have the max-stability. It is well known that a distribu-
tion is max-stable if and only if it is the GEV distribution. The max-
stability is a property satisfied by distribution for which the oper-
ation of taking sample maxima leads to an identical distribution,
apart from a change of scale and location (Coles, 2001). In this rea-
son, the GEV distribution has been widely used with the annual
maximum value.

Here, a fused lasso method is used to estimate change points
and parameters of the GEV distribution. The regularized empirical
risk function is written as follows:

Rkðl;a;jÞ ¼ � log Lðl;a;jÞ þ k
Xn
t¼2

jlt � lt�1j ðk P 0Þ ð3Þ
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