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s u m m a r y

In this paper we present an approach in which we combine a dynamic factor model (DFM) and predefined
response functions to analyze a set of groundwater head series simultaneously. Each groundwater head
series is decomposed into: (a) one or more deterministic components as a response to known driving
forces, (b) one or more common dynamic factors, representing spatial patterns not related to any of
the input series and (c) one specific dynamic factor for each groundwater head series, describing unique
variation for that series. The approach reduces the degrees of freedom for each response function, enables
the application to irregular observed data, and exploits the correlation between residual series of a set of
groundwater head series. The common dynamic factors may be interpreted as spatial patterns due to e.g.
limitations in the model specification or concept, spatially correlated errors in input variables, or driving
forces which have not been included in the model. In the latter case the model can be applied in the con-
text of an alarming system, e.g. to monitor regional trends. The specific dynamic factor depicts the vari-
ation of a particular groundwater head series that cannot be related to any other time series of the set nor
to any input series. Therefore the specific dynamic factor is suitable for analyzing local variations and
detecting incidental measurement errors, for example in a quality control procedure. The DFM frame-
work is illustrated with a set of 8 groundwater head series and applied for filling gaps in time series,
reconstructing high-frequency data, and detecting outliers.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

As many other hydrological variables, groundwater head is
being monitored since many decades, resulting in an enormous
number of time series. For example over 35,000 groundwater head
time series are available in the national repository DINO of the
Geological Survey of the Netherlands (https://www.dinoloket.nl).
During the last 30 years, many groundwater head time series have
been analyzed using time series models. Objectives of these analy-
ses were to assess temporal trends and to quantify the response of
groundwater heads to driving forces like precipitation, evapotran-
spiration and groundwater abstraction (Kim et al., 2005; Gehrels
et al., 1994).

In the early years, the most applied time series models for
groundwater head were transfer function noise models as
described by Box and Jenkins (1994). These models are based on
a temporal discretization with a constant observation frequency.

In the past decades, more and more automatic data loggers are
used for the observation of groundwater heads, enabling high fre-
quent sampling (e.g. 1 day). In many cases, a Box–Jenkins model
for high-frequency groundwater head series includes a large num-
ber of degrees of freedom, because the modeling time step is small
with respect to the response time. This high dimensionality com-
plicates estimation of the model parameters. Therefore, Von
Asmuth et al. (2002) suggested a more robust and parsimonious
approach by using predefined response functions, which reduces
the degrees of freedom tremendously. Such predefined functions
can be applied in continuous time as demonstrated by Von
Asmuth et al. (2002), or in discrete time using a Kalman filter
framework to accommodate changes in observation frequency as
well as irregularly spaced observations (Bierkens et al., 1999;
Berendrecht et al., 2003).

Most applications of time series models to groundwater head
series have been single output models, decomposing one single
groundwater head series into components attributed to known
input series, and a residual noise component (e.g. Ahn, 2000;
Tankersley et al., 1993). Often groundwater head series obtained
from the same hydrological system show similar patterns.
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Obviously, the components of different groundwater head series
driven by the same input series (e.g. precipitation) show similari-
ties in their response. However, also the residual noise components
of different groundwater head time series may be correlated. In
multiple output time series models a set of output time series is
being analyzed simultaneously, taking into account mutual corre-
lation. Multiple output time series models are well known in time
series analysis (Lewis and Reinsel, 1985; Shea, 1987; Lütkepohl,
2007). An application of the model introduced by Shea to ground-
water head series is given by Van Geer and Zuur (1997). Camacho
et al. (1987) introduced the ‘contemporaneous’ autoregressive
moving-average (ARMA) model, in which an output time series is
modeled as a linear combination of historical observations of the
series itself as well as time series in the surrounding area.
Deutsch and Pfeifer (1981) and Stoffer (1986) describe the ‘spac
e–time’ ARMA model, where physical knowledge is used to define
at forehand the spatial coherence in order to reduce the number of
degrees of freedom.

Another class of multivariate time series models is the dynamic
factor model originally proposed by Geweke (1977). Dynamic fac-
tor modeling (DFM) is a multivariate time-series analysis tech-
nique used to describe the variation among many variables in
terms of a few underlying but unobserved variables called com-
mon dynamic factors. One of the attractive properties of DFM is
that it reduces the dimensionality of large systems of multivariate
time series, which makes them very efficient compared to the
methods described above. In addition, it allows to identify under-
lying common patterns or latent effects in time series.

Dynamic factor models have been used in econometric and psy-
chological related fields (Molenaar, 1985; Molenaar et al., 1992;
Harvey, 1989) and environmental sciences (Zuur et al., 2003;
Zuur and Pierce, 2004). Márkus et al. (1999) applied dynamic factor
analysis in hydrology to identify common patterns of groundwater
level in a karstic area of Hungary. Although they identified two
common trends as recharge and extraction, no explanatory vari-
ables were included in the model. Berendrecht (2004) combined
DFM with a transfer function noise (TFN) model to include
explanatory variables in the analysis of multiple groundwater time
series. Ritter and Muñoz-Carpena (2006) combined DFM with a
simple regression model to identify common trends in groundwa-
ter and surface water levels.

In this paper we continue on the research of Berendrecht (2004)
and combine the DFM framework with predefined response func-
tions (Von Asmuth et al., 2002) for modeling explanatory variables.
The method presented here is efficient and robust in the sense that
it reduces the degrees of freedom for each response function and
that it allows for application to irregularly observed data. The
paper demonstrates how DFM exploits the residual correlation of
time series to reveal common dynamic factors and specific
dynamic factors. Whereas most applications of dynamic factor
modeling focus on identifying common trends (e.g. Zuur et al.,
2003; Ritter and Muñoz-Carpena, 2006), this paper shows that
DFM is a powerful method for gap filling, time series extension
and reconstruction of high-frequency data. Moreover we show that
specific dynamic factors can be used to reveal outliers.

The major contributions of this paper are therefore:

� Defining and explaining a dynamic modeling framework for
analyzing irregularly observed hydrological time series simulta-
neously. This includes methods for selecting the number of
common dynamic factors, factor rotation to allow for meaning-
ful interpretation of factors, and efficient filtering, smoothing,
and parameter estimation procedures.

� Combining dynamic factor modeling with predefined response
functions for explanatory variables, enabling a parsimonious
and robust modeling of multiple time series.

� Decomposition of series into common and specific factors,
which provides information on coherence and common
dynamic patterns in the observed hydrological system. This
paper demonstrates how these factors can be used for filling
gaps in time series, reconstructing high-frequency data within
the context of evaluating monitoring networks, and detecting
location-specific outliers.

Section 2 introduces the dynamic factor modeling framework
for analyzing irregularly observed time series. It presents the
discrete-time state space formulation of the DFM including
explanatory variables by means of predefined response functions.
The section comprehensively describes how the dynamic factor
model decomposes residual series into common and specific fac-
tors using maximum likelihood estimation combined with an effi-
cient multivariate Kalman filtering technique. It addresses the
issue of selecting the number of common factors and describes
the method of factor rotation as a means to allow for a plausible
interpretation of factors. In Section 3 we illustrate the method by
applying the model to a set of 8 groundwater head series, mainly
driven by precipitation and evapotranspiration. We use the model
to fill gaps in time series and to reconstruct high-frequency data.
Results show that for time instants with missing data, dynamic fac-
tor modeling produces smaller prediction errors than single output
models, as the DFM includes information from observations taken
from surrounding locations. Section 3 also shows that analysis of
specific dynamic factors may help to detect outliers. As these out-
liers are location-specific and therefore not observed in surround-
ing time series, these outliers may be indicative for incidental
measurement errors. Section 4 gives a discussion of the DFM
framework and results presented in this paper.

2. Theory and background

2.1. The univariate TFN model

For linear groundwater systems the following multi-input dis-
crete transfer function noise (TFN) model can be used to model
groundwater head fluctuations (Tankersley et al., 1993; Knotters
and Van Walsum, 1997; Von Asmuth et al., 2008):

yt ¼ dt þ nt þ lþ et ð1Þ

dt ¼
Xp
j¼1

HjðBÞuj;t ¼
Xp
j¼1

X1
i¼0

Hj;iuj;t�i

" #
ð2Þ

nt ¼ UðBÞgt ¼
X1
i¼0

Uigt�i ð3Þ

with yt the observed groundwater head at time t [L], dt the deter-
ministic component at time t relating one or more input series to
the observed time series using a transfer function model [L], nt the
stochastic or residual component at time t [L], l a constant local
drainage level relative to some reference level [L], et measurement
noise at time t [L] which is assumed to be a zero mean white noise
process with variance r2

e , uj;t the jth input variable at time step t
[L], HjðBÞ a transfer function for input variable j [–], B a backward

shift operator [–] defined as Biuj;t ¼ uj;t�i, Hj;i is the ith coefficient
of the transfer function for input variable j [–], UðBÞ a noise
transfer function [–], Ui is the ith coefficient of the noise transfer
function [–], and gt a zero mean white noise process [L] with
variance r2

g.
Box and Jenkins (1994) define the transfer function HðBÞ in Eq.

(2) as a fraction, where the numerator is a moving average (MA)
function xðBÞ, and the denominator an autoregressive (AR)
function dðBÞ, so that
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