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s u m m a r y

In the hydrology studies, it is well known that the river flows are affected by various factors, and there-
fore the dynamics in their associated time series are complicated and have nonlinear behaviors. In an
empirical study, we investigate the capability of five classes of nonlinear time series models, namely
Threshold Autoregressive (TAR), Smooth Transition Autoregressive (STAR), Exponential Autoregressive
(EXPAR), Bilinear Model (BL) and Markov Switching Autoregressive (MSAR) to capture the dynamics in
the Colorado river discharge time series. Least Squares (LS) and Maximum Likelihood (ML) methods
are employed to estimate parameters of the models. For model comparison three criteria, namely loglike-
lihood, Akaike information criterion (AIC) and Bayesian information criterion (BIC) are calculated. The
results show that a self-exciting TAR (SETAR) model performs better than other four competing models.
To forecast future river discharge values an iterative method is applied and forecasting confidence inter-
vals are constructed. The out-of-sample 1-day to 5-day ahead forecasting performances of the models
based on ten forecast accuracy measures are evaluated. Comparing verification metrics of all models,
SETAR model presents the best forecasting performance.

� 2015 Published by Elsevier B.V.

1. Introduction

The inherent nonlinear nature of hydrologic systems and the
associated processes has been known for long (e.g., Izzard, 1966;
Amorocho, 1967; Amorocho and Brandstetter, 1971; Coulibaly
and Baldwin, 2005). River flow specially in snowmelt driven rivers
can be characterized by several general features. As a result of the
periodicity in precipitation, river flow has also strong seasonal
periodicity. The seasonal cycle of river flow is asymmetric; i.e.,
river flow increases rapidly (usually during late winter and spring)
and decreases gradually (towards the end of autumn). The fluctu-
ations in river flow are large for large river flow and small for small
river flow. It is important to note that unlike other climate compo-
nents, river flow with a few exceptions may have been impacted by
human activity, like damming, use of river water for agriculture,
etc., a fact which makes the river flow data more difficult to study.
The fluctuations in river flow are of special interest since they are
directly linked to floods and droughts. There are several interesting
characteristics of river flow fluctuations: (i) the river flow fluctua-
tions have power law tails in the probability distribution (e.g.,
Murdock and Gulliver, 1993; Kroll and Vogel, 2002), (ii) the river
flow fluctuations are long-term correlated (e.g., Hurst, 1951;
Pelletier and Turcotte, 1997; Koscielny-Bunde et al., 2006), and
(iii) river flow fluctuations are multifractal (e.g., Tessier et al.,

1996; Pandey et al., 1998; Kantelhardt et al., 2003). These scaling
laws may improve the statistical prediction of extreme changes
in river flow (e.g., Bunde et al., 2004). Streamflow forecasting is
of vital importance to flood mitigation and water resources man-
agement and planning. The short-term forecasting such as hourly
or daily forecasting is crucial for flood warning and defense.
There are a variety of available methods for forecasting stream-
flows, which may fall into two general classes: process-driven
methods and data-driven methods (Wang, 2006). Data-driven
methods mathematically identify the connection between the
inputs and the outputs. One of the popular Data-driven methods
is the time series models approach, which is the focus of this
research. This approach is used for building mathematical models
to generate synthetic, hydrological records and to forecast hydro-
logical events (Salas, 1993). A variety of linear AR models are used
to forecast streamflows (McLeod et al., 1977; Lu et al., 1996;
Abrahart and See, 2000; Montanari et al., 2000; Ooms and
Franses, 2001). Some nonlinear AR models are also applied to
streamflow forecasting (Tong and Lim, 1980; Astatkie et al., 1997).

Several surveys of nonlinear time series models and mono-
graphs and texts written on the topic exist (e.g., Tong, 1990;
Granger and Teräsvirta, 1993; Franses and van Dijk, 2000). There
are shorter surveys highlighting different sections of the field
(e.g., Brock and Potter, 1993; Teräsvirta et al., 1994; Potter, 1999;
Swanson and Franses, 1999; Granger, 2001; Van Dijk et al., 2002;
Tsay, 2002). This study is restricted to parametric models. For a
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recent treatment of nonparametric models, see Fan and Yao (2003).
Deterministic processes are another area beyond the scope of con-
siderations here (Tong, 1995).

Most streamflow processes are commonly accepted as nonlin-
ear (Wang, 2006). Jian et al. (1998) fitted a mixed threshold autore-
gressive model to a river flow data set and reported that the
proposed approach could accurately describe the complicated non-
linear time series and the discharge regime of the river flow. Vasas
et al. (2007) analyzed a daily river flow using a two-state regime
switching autoregressive model and stated that regime switching
models have the advantage that they can be easily interpreted in
physical terms with the latent regimes corresponding to wet and
dry, or, alternatively, rising and falling periods. Astatkie (2006)
compared forecasting performance of two nonlinear models with
a nested threshold autoregressive (NeTAR) model using a daily
streamflow, the results in this study suggested that the NeTAR
model could be used for short term forecasting of daily stream-
flows of drainage basins with seasonal snow accumulation.
Komornik et al. (2006) discussed the prediction ability of several
nonlinear time series models including SETAR and STAR models
and concluded that SETAR and STAR models could describe sea-
sonal characteristics in the mean monthly streamflow data. Kisi
(2009) investigated forecasting performance of the wavelet regres-
sion (WR) model in monthly streamflow forecasting, on the basis
of the results, the WR is found to be better than the artificial neural
network (ANN) and AR models in monthly streamflow forecasting.
Shao et al. (2009) proposed functional-coefficient models with a
periodic component for short-term streamflow forecasting, the
proposed model extends many familiar nonlinear time series mod-
els including Exponential Autoregressive model (EXPAR) and
Threshold Autoregressive model (TAR). Functional-coefficient
models are capable of including exogenous variables such as
upstream and rainfall in the model.

This study is in the context of operational forecasting
and intended for forecasting daily flows. Our aim is to compare
the forecasting performance of two linear models and five
classes of nonlinear models, namely Threshold Autoregressive
(TAR), Smooth Transition Autoregressive (STAR), Exponential
Autoregressive (EXPAR), Bilinear Model (BL) and Markov
Switching Autoregressive (MSAR) to capture the dynamics in the
daily Colorado river discharge time series and illustrate perfor-
mance of the models with respect to dry and wet seasons and flow
magnitude. The Colorado river is a vital source of water for agricul-
tural and urban areas in the southwestern desert lands of North
America. The reasons for choosing these nonlinear models are:
(1) in the river flow process beside well-recognized physical
sources, some other sources such as seasonality, non stationarity
and long memory can be identified as source of non linearity
(Wang, 2006), regime switching models could describe seasonality
and non stationarity of river flows; (2) the possibility of introduc-
ing simple non linear models to river flow forecasters; (3) it is
well-known that there is a relationship between river flow and
many meteorological variables, in particular rainfall–runoff pro-
cess has asymmetric effects on river flow (Amendola et al., 2006),
these effects can be adequately explained by different classes of
regime switching models such as TAR, SETAR, and TARSO (e.g.,
Tong, 1990; Tsay, 1998); (4) switching models gives the possibility
to model the short rising and longer falling periods separately,
which is a distinguishing feature of the river flows (Vasas et al.,
2007); (5) in fact, since precipitation data are rarely available for
the whole river catchment, the use of latent regimes as proxies
of rainfall is often the only way to incorporate the physical proper-
ties into the modeling process. We consider linear models since
some authors argue that non linear models may fail to forecast bet-
ter than simple linear models, even when linearity is rejected sta-
tistically (Clements and Krolzig, 1998; Teräsvirta et al., 2005).

We have conducted two verification methods, namely
in-sample and out-of-sample forecasting (calibration and valida-
tion, respectively). In-sample forecasting (calibration) essentially
tells us how the chosen model fits the data in a given sample while
the out-of-sample forecasting (validation) is concerned with deter-
mining how a fitted model forecasts future values of the regressed,
given the values of the regressors. For in-sample model compar-
ison three criteria namely loglikelihood, Akaike information crite-
rion (AIC) and Bayesian information criterion (BIC) are calculated.
AIC and BIC criteria are objective measures of model suitability
that balance model fit and model complexity in other word AIC
and BIC are fitness indexes for trading off the complexity of a
model against how well the model fits the data. Since AIC and
BIC attempt to find the model that best explains the data with a
minimum number of parameters, they are considered an approach
favoring simplicity. The root-mean-square error (RMSE) and 9
other measures are used as the verification metrics to evaluate
the out-of-sample forecast performance of linear and nonlinear
models. These measures are the accuracy measuring criteria. The
verification metrics are calculated using all data and data condi-
tioned on seasons and flow magnitude. Least Squares (LS) and
Maximum Likelihood (ML) methods are employed to estimate
parameters of the models.

Sections 2–6 illustrate TAR, STAR, EXPAR, BL and MSAR models
respectively, Section 7 introduces model comparison and forecast
accuracy measures, Section 8 describes data, Section 9 presents
empirical results, Section 10 explains out-of-sample forecasts and
final section is devoted to the conclusion.

2. Threshold autoregressive

One popular class of nonlinear time series models is the
Threshold Autoregressive (TAR) models, which is probably first
proposed by Tong (1978) and discussed in detail in Tong (1990).
The TAR models are simple and easy to understand, but rich
enough to generate complex nonlinear dynamics. For example, it
can be shown that the TAR models can have limit cycles and thus
be used to model periodic time series, or produce asymmetries and
jump phenomena that cannot be captured by a linear time series
model. In spite of the simplicity of the TAR model form, there are
many free parameters to estimate and variables to choose when
building a TAR model, and this has hindered its early use. A special
class of TAR model is called self-exciting TAR (SETAR).

2.1. TAR and SETAR models

Consider a simple AR(p) model for a time series fytg

yt ¼ lþ a1yt�1 þ a2yt�2 þ � � � þ apyt�p þ r�t ð1Þ

where l and ai ði ¼ 1;2; . . . ;pÞ are the AR coefficients, �t � Nð0;1Þ
and r > 0 is the standard deviation of the disturbance term. The
model parameters a ¼ ðl;a1;a2; . . . ;apÞ and r are independent of
time t and remain constant. To capture nonlinear dynamics, TAR
models allow the model parameters to change according to the
value of a weakly exogenous threshold variable zt:

yt ¼ lðjÞ þaðjÞ1 yt�1 þ aðjÞ2 yt�2 þ � � � þaðjÞp yt�p þrðjÞ�t ; if rj�1 < zt 6 rj

ð2Þ

where j ¼ 1;2; . . . ; k, and �1 ¼ r0 < r1 < � � � < rk ¼ 1. In essence,
the k� 1 non-trivial thresholds ðr1; r2; . . . ; rk�1Þ divide the domain
of the threshold variable zt into k different regimes. In each different
regime, the time series yt follows a different AR(p) model. When the
threshold variable zt ¼ yt�d, with the delay parameter d being a pos-
itive integer, the dynamics or regime of yt is determined by its own
lagged value yt�d and the TAR model is called a self-exciting TAR or
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