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s u m m a r y

A new technique for gauge-only precipitation analysis for improved estimation of heavy-to-extreme
precipitation is described and evaluated. The technique is based on a novel extension of classical optimal
linear estimation theory in which, in addition to error variance, Type-II conditional bias (CB) is explicitly
minimized. When cast in the form of well-known kriging, the methodology yields a new kriging estima-
tor, referred to as CB-penalized kriging (CBPK). CBPK, however, tends to yield negative estimates in areas
of no or light precipitation. To address this, an extension of CBPK, referred to herein as extended condi-
tional bias penalized kriging (ECBPK), has been developed which combines the CBPK estimate with a triv-
ial estimate of zero precipitation. To evaluate ECBPK, we carried out real-world and synthetic
experiments in which ECBPK and the gauge-only precipitation analysis procedure used in the NWS’s
Multisensor Precipitation Estimator (MPE) were compared for estimation of point precipitation and mean
areal precipitation (MAP), respectively. The results indicate that ECBPK improves hourly gauge-only
estimation of heavy-to-extreme precipitation significantly. The improvement is particularly large for
estimation of MAP for a range of combinations of basin size and rain gauge network density. This paper
describes the technique, summarizes the results and shares ideas for future research.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

For its obvious importance, quantitative precipitation estima-
tion (QPE) has been a topic of active research for over a century
(Thiessen, 1911). Whether it is based on gauge-only or multisensor
estimation, QPE generally involves spatial prediction using statisti-
cal or dynamical-statistical procedures. Statistical procedures, by
far the more widely used of the two to date, use optimal (in some
sense of the word) estimation, of which various types of linear
and nonlinear techniques are available (see e.g. Creutin and
Obled, 1982; Tabios and Salas, 1985 and references therein). For
example, the algorithms used operationally in the National
Weather Service (NWS) for gauge-only and radar-gauge analyses
in their Multisensor Precipitation Estimator (MPE, Seo et al.,

2010) are variants of kriging and cokriging, respectively (Seo
1998a,b). More recently, artificial neural networks (Bellerby et al.,
2000, Grimes et al., 2003; Hsu et al., 2007; Chiang et al., 2007)
and support vector regression (Chen et al., 2011) have been added
to the list of techniques for QPE.

Real-time QPE demands accurate estimation particularly of
large amounts as they represent greater hazards to lives and prop-
erties. In flood forecasting, what matters most for QPE is the ability
to estimate large amounts of precipitation as accurately as possible
over the range of spatiotemporal scales of aggregation associated
with the size and response time of the basin. While radar and mult-
isensor QPE have been playing an increasingly large role in flood
forecasting (Seo et al., 2010), it is expected that rain gauges remain
as the primary source of QPE in many areas due to radar coverage
gaps, lack of accuracy in remotely sensed estimates and latency in
satellite-based estimates. Kriging or its variants do produce, as the-
oretically expected, precipitation estimates that are unbiased and
of minimum error variance in the unconditional sense. In the con-
ditional sense, however, these so-called optimal estimation tech-
niques very often severely underestimate heavy precipitation and
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overestimate light precipitation (Ciach et al., 2000; Seo and
Breidenbach, 2002; Brown and Seo, 2010; Habib et al., 2012). These
results arise because, to achieve (unconditional) minimum error
variance, it is necessary to reduce the error variance associated
with light to moderate precipitation, which occurs frequently and
over large areas, even if it may increase the error variance associ-
ated with heavy precipitation, which occurs relatively rarely and
generally over small areas. For accurate estimation of large
amounts, however, it is at least as important to reduce conditional
bias (CB), in particular Type-II CB, as to minimize unconditional
error variance. QPE for flood forecasting is a prime example of that.
Type-I and -II CBs arise from Type-I and -II errors in the mean
sense, respectively. A Type-I error is associated with a false alarm
(e.g. crying wolf without a wolf in sight) whereas a Type-II error
is associated with failing to raise an alarm (i.e. failing to see the
wolf). Note that, whereas Type-I CB can be reduced by calibration
(e.g. if the false alarm rate is too high, one may not cry wolf as
often), Type-II CB cannot. In the above, Type-II CB is defined as
E½X j X ¼ x� � x where X, X and x denote the unknown truth, the
estimate, and the realization of X, respectively (Joliffe and
Stephenson, 2003). In the context of spatial estimation, Reducing
Type-II CB amounts to improving discrimination in spatial predic-
tion of large or small values. Unlike Type-I CB (i.e. E½X j X ¼ x̂� � x̂),
which relates to calibration-refinement factorization (Murphy and
Winkler, 1987), Type-II CB is not very amenable to statistical bias
correction or post processing (Moskaitis, 2008).

Recently, Seo (2013) has demonstrated in the context of gauge-
only QPE that the potential impact of reducing Type-II CB (hereaf-
ter referred to as CB for short) at sub-daily and mean areal precip-
itation (MAP) scales of O(100)–O(103) km2 may be substantial. The
synthetic experiments (Seo, 2013) suggest that the margin of
improvement for estimating heavy precipitation from reducing
CB may be comparable to that from greatly increasing the density
of the rain gauge network or, equivalently in the context of mult-
isensor estimation, that from significantly improving the quality
of the remotely sensed data or scale-compatible NWP precipitation
analysis. Often, lack of performance by linear estimators has been
attributed to their linear (as opposed to nonlinear) nature. Experi-
mental and empirical evidences suggest, however, that the mar-
ginal improvement by nonlinear estimation is relatively small
(see e.g. Azimi-Zonooz et al., 1989; Seo, 1996a,b), and that CB
may be a much more important limiting factor than linearity in
estimation of heavy-to-extreme precipitation.

Seo (2013) extends optimal linear estimation theory in which, in
addition to error variance, CB is explicitly minimized. The resulting
Fisher-like solution may also serve as an alternative observation
equation for a range of Fisher solution-based static or dynamic fil-
ters, such as Kalman filter and its variants. When cast in the form
of well-known kriging or its variants used in MPE, the proposed
methodology yields a new kriging estimator, referred to as CB-
penalized kriging (CBPK). For estimation of skewed nonnegative
variables such as precipitation, however, CBPK yields estimates that
may be significantly negative in areas of light to no precipitation. To
address this, an extension of CBPK, referred to herein as extended
CB-penalized kriging (ECBPK), has been developed. In this paper,
we describe and comparatively evaluate ECBPK with the variant
of ordinary kriging (OK) (Journel and Huijbregts, 1978) used in
MPE for gauge-only estimation. The evaluation is carried out for
estimation of point and mean areal precipitation (MAP) through
real-world and synthetic experiments, respectively. The data sets
used include a number of heavy-to-extreme precipitation events
in Texas, Oklahoma and vicinity, and the Southeastern US. The
new contributions of this work include development and evalua-
tion of a new technique for improved real-time estimation of
heavy-to-extreme precipitation, and improving understanding of

errors in spatial optimal estimation of precipitation and their
dependence on the magnitude and intermittency of precipitation,
catchment scale and rain gauge network density.

This paper is organized as follows. Section 1 provides the
context of the problem and motivation for the research.
Section 2 describes the proposed technique. Section 3 describes
comparative evaluation of the technique. Section 4 presents the
results. Section 5 summarizes the main conclusions and future
research recommendations.

2. Extended conditional bias-penalized kriging (ECBPK)

In this section, we provide a summary description of CBPK and
describe ECBPK in some detail.

2.1. Conditional bias-penalized kriging (CBPK)

CBPK may be considered an extension of simple kriging (SK) in
which the objective function is made not only of error variance but
also of CB. The SK estimator (see e.g. Journel and Huijbregts, 1978)
is given by:

Z�0 ¼ m0 þ
Xn

i¼1

kiðZi �miÞ ð1Þ

where Z�0 denotes the SK estimate of E[Z0] | Z1 = z1, . . . ,Zn = zn] of the
random variable of interest at location u0, m0 denotes the mean of
Z0, ki are the weights assigned to Zi, mi denotes the a priori mean
of Zi and n denotes the number of neighbors used in estimation.
In SK, the weights are obtained by minimizing the error variance
of the estimate, JSK:

JSK ¼ EZ�0 ;Z0
½ðZ�0 � Z0Þ2�

¼ EZi ;Z0
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i¼1

kiðZi �miÞ � ðZo �m0Þ
( )2
2
4

3
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where the expectation operations are with respect to the variables
subscripted. In CBPK, the CB penalty term, or the unconditional
expectation of CB squared, is added to the objective function as
follows:

JCBPK ¼ EZ�0 ;Z0
½ðZ�0 � Z0Þ2� þ a � EZ0 EZ�0

½Z�0 j Zo� � Zo
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� �
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f Z0
ðz0Þdz0
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where z0 denote the experimental values of Z0, f Z0
ðz0Þ denotes the

marginal probability density function (pdf) of Z0 and a denotes
the positive weight given to the CB penalty term. Experience thus
far suggests that a reasonable choice of a is unity but it may be opti-
mized for improved balanced performance between reducing error
variance and reducing CB. In Eq. (3), we specify EZi

½Zi �mi j Z0 ¼ z0�
using the Bayesian optimal estimator (Schweppe, 1973) as:

E½Zi �mi j Z0 ¼ z0� ¼ qi0
ri

r0
ðz0 �m0Þ ð4Þ

where qi0 denotes the correlation between Zi and Z0, and ri and r0

denote the standard deviation of Zi and Z0, respectively. Note that
Eq. (4) is identical to the SK or the linear regression solution for esti-
mating Zi given Z0. The CBPK system results from minimizing JCBPK

in Eq. (3) with respect to the weights, ki’s:
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