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s u m m a r y

Richards’ equation (RE) is the most common mathematical expression for soil water movement in a por-
ous medium. Despite advancements in numerical schemes and high-performance computing, the
requirements of iterative computations and fine grids hinder further extension of the RE to multi-dimen-
sional and large-scale applications. Averaging methods of hydraulic conductivity have been known to be
one of the significant factors affecting the accuracy of numerical solutions of the RE, especially when
coarse grids are used. In this study, we developed a high-order averaging method of hydraulic conductiv-
ity for accurate numerical modeling of the RE, which has a straightforward formula regardless of the soil
conditions and produces high simulation accuracy when used on coarse grids. The developed method is
based on the high-order upwind scheme, which is widely used for hyperbolic partial differential equa-
tions within a finite volume framework in order to prevent numerical oscillations near a discontinuity
while preserving high-order accuracy. Numerical simulations of several one- and two-dimensional cases
performed in the study indicate that the proposed method outperforms existing simple averaging meth-
ods and is also superior, or at least equivalent, to complex averaging methods over a wide range of soil
textures, especially on coarse grids. In addition, the proposed method is straightforwardly extended to
nonorthogonal grids by being combined with the coordinate transformation method and the extension
is verified through multi-dimensional test cases as well as tests on a heterogeneous soil domain.

� 2013 The Authors. Published by Elsevier B.V.

1. Introduction

Modeling of soil water movement is of great importance in var-
ious research areas, and significant advances have been made to-
ward understanding soil moisture dynamics in the last decade
(Bárdossy et al., 1995; Bronstert and Plate, 1997; Corradini et al.,
2011, 1998; DiCarlo, 2013; among others). Soil moisture influences
a range of environmental processes in a nonlinear manner, e.g. the
partitioning of precipitation into runoff, infiltration, leakage, and
evaporation; the mass and energy exchanges between soil and
atmosphere; and the organization of natural ecosystems and biodi-
versity (Ridolfi et al., 2003; Vereecken et al., 2008; Western et al.,
2002; and references therein). Richards’ equation (RE) is the most
common mathematical expression for soil water movement in a
porous medium but does not have a general analytical solution.
Despite important advances having been made in numerical

solutions of the RE (An et al., 2012, 2011, 2010; Celia et al., 1990;
Jones and Woodward, 2000; Kuráž et al., 2010; Lott et al., 2012),
simulation of soil moisture using the RE still requires considerable
computational effort, which hinders its extension to multi-dimen-
sional and large-scale applications. Although relatively coarse grids
are required to simulate a wide spatial domain for a long time per-
iod, previous studies have shown that simple conventional meth-
ods using coarse grids suffer from drawbacks of numerical
instability and oscillation, resulting in large errors (e.g. Baker,
2006). For example, if the numerical accuracy obtained at a spatial
resolution of 10 cm is available with a spatial resolution of 100 cm,
we can simulate a 100-fold larger domain in two-dimensional
space with the same numerical computation and also expand the
available temporal length in a given time. However, complex and
sensitive numerical conditions originating from heterogeneous
and anisotropic features of the soil matrix compound the difficul-
ties in employing coarse grids. Therefore, accurate numerical
methods on relatively coarse grids are crucial for applying numer-
ical solutions of the RE to real-world cases.

One of the significant factors affecting the accuracy of numeri-
cal solutions of the RE is the averaging method of hydraulic
conductivity when coarse grids are used. Previous studies (Baker,
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1995; Belfort and Lehmann, 2005; Haverkamp and Vauclin, 1979;
Szymkiewicz, 2009) have shown that simple averaging methods
such as arithmetic, geometric, or upwind means may produce
unacceptably large errors on coarse grids owing to the high nonlin-
earity of the hydraulic conductivity. Further, the arithmetic mean—
one of the most popular averaging methods—often suffers from the
drawback of numerical oscillations on coarse grids. In order to
achieve accuracy within an acceptable level on coarse grids, the
Darcian mean approach (Warrick, 1991) has been proposed. In this
approach, the average hydraulic conductivity is estimated using
Darcy’s law by assuming a steady state between two adjacent
nodes or cells. Subsequently, several methods based on the Darcian
mean approach have been proposed (Baker, 2000, 1995; Gastó
et al., 2002; Szymkiewicz, 2009). Most recently, Szymkiewicz
(2009) proposed the Darcian-mean-type method, in which the flow
is categorized into three types—infiltration, drainage, and capillary
rise—and hydraulic conductivity is computed between the inte-
grated mean and the upwind mean according to flow types. This
method generally shows a good performance for a variety of soil
textures and cases. However, the integrated mean, used for compu-
tation of the Darcian mean, incurs additional computational cost
compared to the simple averaging method. Since the function of
hydraulic conductivity is highly nonlinear and no general form ex-
ists to integrate the hydraulic conductivity function, numerical
integration is usually required as an additional step. Belfort et al.
(2013) showed that only the upwind mean can strictly preserve
the monotonicity of the solution. They also proposed a simple
switching method, in which the upwind mean is used when the
arithmetic or geometric mean violates the monotonicity of the
solution. Despite this method having a simple implementation
and incurring lower additional computational cost, its accuracy
should be determined between the arithmetic mean and the up-
wind mean. In addition, if the arithmetic or geometric mean vio-
lates the monotonicity in several steps, e.g. multi-dimensional
cases, this method may become identical to that with the upwind
mean.

The objective of this study is to develop and verify a new
high-order method for averaging the hydraulic conductivity to
obtain accurate numerical solutions of the RE in conjunction
with coarse grids. The developed method is based on the high-
order upwind scheme, which has been widely used since the
1980s for hyperbolic equations such as the compressible Euler
equation (e.g. Chakravarthy and Osher, 1983; Harten et al.,
1983; Roe, 1986; Sweby, 1984) or the shallow water equation
(e.g. An and Yu, 2012; Louaked and Hanich, 1998; Mingham
and Causon, 1998; Toro, 2000) for preventing numerical oscilla-
tions while capturing discontinuity accurately. In this study, the
high-order upwind scheme is implemented for evaluating
hydraulic conductivity. To the best of our knowledge, the high-
order upwind scheme has not yet been applied to the evaluation
of hydraulic conductivity in the numerical modeling of the RE,
despite its high potential to improve the numerical accuracy
on coarse grids. It is worth noting that the developed method
is different from the conventional upwind mean, which has only
first-order spatial accuracy.

The remainder of this paper is organized as follows. Section 2
presents the numerical scheme of the RE with averaging
methods of hydraulic conductivity. It also describes several con-
ventional averaging methods and the proposed method. Section 3
presents an evaluation of the proposed method through
several test cases, including one-dimensional (1D) infiltration,
drainage, and capillary rise problems; and two-dimensional (2D)
infiltration and drainage problems. The 2D test cases consider
the implementation of the proposed method on nonorthogonal
grids and a heterogeneous soil domain. Lastly, Section 4 concludes
the paper.

2. Numerical scheme

2.1. Numerical discretization of RE

The 1D form of the RE is written as follows (Richards, 1931):
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where w is the pressure head; h, the volumetric soil moisture con-
tent; K, the hydraulic conductivity; t, the time; and z, the vertical
dimension, which is assumed to be positive in the upward direction.
As Eqs. (1) and (2) include both h and w, this form of the RE is called
the ‘‘mixed’’ form. This form is generally preferred to the h-based
and w-based forms for its improved mass balance in treating satu-
rated and unsaturated flows simultaneously (Celia et al., 1990).

Applying implicit Euler temporal discretization and cell-cen-
tered finite-volume spatial discretization on a uniform grid to Eq.
(1) gives
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where the superscript m denotes the time level and the subscript i
denotes the cell number. Note that fourth term on the left-hand side
of Eq. (3) represents nonlinear advection originating from gravity
force, and this term can cause numerical oscillation near the discon-
tinuity unless an appropriate averaging method of hydraulic con-
ductivity for Kmþ1

iþ1=2 and Kmþ1
i�1=2 is implemented. Similarly, a multi-

dimensional RE on an orthogonal grid can also be discretized within
the cell-centered finite-difference or finite-volume framework, as
shown in the previous studies (An et al., 2011; Clement et al., 1994).

A discretized equation is solved using the Newton iteration
method. Since this method is usually sensitive to the initial guess,
we implement a simple line-search approach to improve the
robustness following Kelley (1995). The time-step duration is ad-
justed on the basis of the number of iterations required for conver-
gence at the previous time-step duration (An et al., 2012; Paniconi
and Putti, 1994). The time-step duration cannot be less than a pres-
elected minimum or greater than a preselected maximum. If the
number of iterations to convergence is less than Nm, the next
time-step duration is multiplied by Cm, which is a predetermined
value greater than 1. If the number of iterations is greater than
Nr, the next time-step duration is multiplied by Cr, which is a pres-
elected value less than 1. Further, if the number of iterations be-
comes greater than a prescribed Nb, the iterative process for the
time level is terminated. Subsequently, the time-step duration is
multiplied by Cb—a predetermined value less than 1—and the iter-
ative process restarts. For most large and difficult problems, these
control factors of the time-step duration will require adjustment to
ensure good iterative performance. In this study, the values of
Cm = 1.2, Cr = 0.8, Cb = 0.5, Nm = 6, Nr = 10, and Nb = 20 are used
according to the previous study (An et al., 2012), where the param-
eters are optimized empirically.

As we deal with the RE in the ‘‘mixed’’ form, soil water retention
and hydraulic conductivity models are required to express the rela-
tionships of h–w and K–w, which impose difficulties in the numer-
ical computation owing to high nonlinearity. Several mathematical
models have been proposed in the literature (Szymkiewicz and
Helmig, 2011; and references therein). In this study, because of a
wide range of applications, we use two sets of soil water retention
and hydraulic conductivity models: (1) the combination of the
Brooks–Corey model (Brooks and Corey, 1964) and Mualem model
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