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s u m m a r y

Downscaling methods have been proposed to estimate catchment-scale soil moisture patterns from coar-
ser resolution patterns. These methods usually infer the fine-scale variability in soil moisture using vari-
ations in ancillary variables like topographic attributes that have relationships to soil moisture.
Previously, such relationships have been observed in catchments using soil moisture observations taken
on uniform grids at hundreds of locations on multiple dates, but collecting data in this manner limits the
applicability of this approach. The objective of this paper is to evaluate the effectiveness of two strategic
sampling techniques for characterizing the relationships between topographic attributes and soil mois-
ture for the purpose of constraining downscaling methods. The strategic sampling methods are condi-
tioned Latin hypercube sampling (cLHS) and stratified random sampling (SRS). Each sampling method
is used to select a limited number of locations or dates for soil moisture monitoring at three catchments
with detailed soil moisture datasets. These samples are then used to calibrate two available downscaling
methods, and the effectiveness of the sampling methods is evaluated by the ability of the downscaling
methods to reproduce the known soil moisture patterns. cLHS outperforms random sampling in almost
every case considered. SRS usually performs better than cLHS when very few locations are sampled, but it
can perform worse than random sampling for intermediate and large numbers of locations.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many hydrologic processes are influenced by patterns of volu-
metric water content in the soil (soil moisture). Specifically at
the catchment scale, spatial patterns of soil moisture are closely re-
lated to spatial patterns of erosion (Fitzjohn et al., 1998), crop yield
(Green and Erskine, 2004), and the magnitude and timing of runoff
production (Western, 2001). Yet, most available methods do not
estimate soil moisture at resolutions suitable for catchment-scale
applications (e.g., grid cells with a 10–50 m linear dimension).
For example, neutron-emission methods (Shuttleworth et al.,
2010; Zreda et al., 2008) and microwave remote-sensing methods
(Njoku et al., 2003; Kerr et al., 2001; Entekhabi et al., 2010) esti-
mate spatial patterns of soil moisture at resolutions ranging from
700 m to 60 km.

Various methods have been proposed to downscale coarse-res-
olution soil moisture estimates. The initial and final resolutions of
the soil moisture patterns are important to the design of these
methods because different factors control spatial variations in soil
moisture at different scales (Western et al., 2002). Methods
described by Merlin et al. (2006), Kim and Barros (2002), Mascaro

et al. (2010, 2011), Pellenq et al. (2003) and Temimi et al. (2010) all
focus on producing soil moisture patterns at resolutions of 90 m or
coarser. Kaheil et al. (2008) proposed a method to downscale soil
moisture patterns to a 50 m resolution using sparse ground obser-
vations. Wilson et al. (2005) used fine-resolution topographic attri-
butes, fine-resolution (10–40 m) in situ soil moisture observations,
and a single spatial average soil moisture value on each date to
estimate soil moisture patterns with resolutions of 10–40 m.
Similarly, Perry and Niemann (2007) and Busch et al. (2012)
explored a method using empirical orthogonal function (EOF)
analysis, fine-resolution (5–15 m) topographic attributes, fine-
resolution (10–40 m) in situ soil moisture observations, and a
single spatial average soil moisture value on each date to estimate
soil moisture patterns with resolutions of 10–40 m. Recently,
Coleman and Niemann (2013) proposed a conceptual model
known as the Equilibrium Moisture from Topography (EMT) model
to estimate soil moisture patterns at resolutions of 10–40 m using
fine-resolution (5–15 m) topographic attributes, fine-resolution
(10–40 m) soil moisture observations, and a single spatial average
soil moisture value on each date.

Several of these downscaling methods infer the fine-scale vari-
ability of soil moisture from its relationship to available ancillary
variables. Soil moisture patterns have been shown to be correlated
with spatial patterns of topography, vegetation, soil texture, and
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combinations of these variables (Cantón et al., 2004; Gómez-Plaza
et al., 2001; Gutiérrez-Jurado et al., 2006; Western et al., 1999). At
the catchment-scale, topography has been a widely-used ancillary
data source (Busch et al., 2012; Coleman and Niemann, 2013; Perry
and Niemann, 2007; Wilson et al., 2005) because of its known
influence on soil moisture patterns at this scale (Famiglietti et al.,
1998; Western and Grayson, 1999) and its nearly global availabil-
ity at fine resolutions (Welch et al., 1998). Many of these downscal-
ing methods also use in situ soil moisture observations to
characterize the relationships between the variations in soil mois-
ture and the variations in ancillary data. These relationships are
commonly obtained through linear regression (Busch et al., 2012;
Perry and Niemann, 2007; Wilson et al., 2005) or parameter cali-
bration (Coleman and Niemann, 2013). Busch et al. (2012) found
that such relationships are catchment-specific, which implies that
soil moisture observations need be collected from the catchments
where the downscaling method will be applied or the relationships
need to be inferred from knowledge of the physical characteristics
of the catchment. In the development of most catchment-scale
downscaling methods, the in situ soil moisture observations have
been collected on uniform grids, which contain hundreds of points
on multiple dates (Busch et al., 2012; Coleman and Niemann, 2013;
Perry and Niemann, 2007; Wilson et al., 2005). Collecting data in
this manner is expensive and time-consuming, which limits the
applicability of such downscaling methods.

Several studies have considered more efficient sampling
techniques to observe catchment-scale soil moisture, but these
studies have focused on capturing catchment-average conditions.
In particular, many researchers have attempted to estimate a
catchment-wide spatial average soil moisture using point-scale
observations from a limited number of locations (Brocca et al.,
2009; Martinez-Fernandez and Ceballos, 2005; Grayson and
Western, 1998). Similarly, other researchers have attempted to
validate coarse-resolution remote sensing estimates by upscaling
point soil moisture observations (Cosh et al., 2008, 2006; Crow
et al., 2012, 2005).

Sampling techniques have also been proposed to efficiently cap-
ture the variability of catchment conditions, but such techniques
have not been applied to soil moisture. Conditioned Latin hyper-
cube sampling (cLHS) (Minasny and McBratney, 2006) and strati-
fied random sampling (SRS) (Avery and Burkhart, 2001) aim to
determine monitoring locations for the variable of interest based
on knowledge of ancillary variables. The goal of both methods is
to identify sampling locations that represent a diverse set of values
for the ancillary variables so that the sampling is less likely to be
redundant. cLHS and SRS are similar in that they each divide the
observed range of each ancillary variable into bins and then select
the observation locations from the locations within each bin. These
methods differ in how the bins are determined. cLHS divides the
range of each ancillary variable into equally probable bins such
that each bin contains the same number of observations. For SRS,
different methods have been used to determine the bins (McKenzie
and Ryan, 1999; Worsham et al., 2012). Here, we focus on the case
where SRS divides the range of each ancillary variable into bins
that cover an equal fraction of the observed range, regardless of
the number of observations within each bin. Both cLHS and SRS
are potentially more efficient than uniform or random sampling
because they aim to reduce redundancy in the information gath-
ered at the sampling locations. Minasny and McBratney (2006)
evaluated cLHS in the context of soil mapping and found that sam-
ple histograms created from cLHS better replicate the known histo-
grams of topographic, vegetative, and land use ancillary variables
than those created from random sampling and a stratified sam-
pling method. Recently, Worsham et al. (2012) evaluated the use
of cLHS and a SRS method by their ability to improve spatial esti-
mates of soil carbon content. Both methods outperform random

sampling when sample sizes are limited, but cLHS does not consis-
tently outperform SRS in that context. The SRS method they used
stratifies the landscape into units based on soil type and land use
data. Samples are then selected randomly from each spatially-con-
tiguous unit in order to sample across the ranges of the ancillary
variables as well as the spatial extent of the region. McKenzie
and Ryan (1999) also used an SRS method (Brus and de Gruijter,
1997) with climate and topographic ancillary variables to make
spatial predictions of soil depth, total phosphorus, and total car-
bon. The SRS method they used only focuses on adequately cover-
ing the ranges of the ancillary variables (not the spatial extent of
the area of interest).

The objective of the present paper is to assess the effectiveness
of two strategic sampling techniques at identifying the relation-
ships between topographic attributes and soil moisture for catch-
ment-scale downscaling applications. Two strategic sampling
techniques are considered: the cLHS method proposed by Minasny
and McBratney (2006) and an SRS method that is similar but not
identical to the SRS technique used by McKenzie and Ryan,
(1999). These sampling methods are coupled with two downscal-
ing methods: the EMT model (Coleman and Niemann, 2013) and
the EOF method (Busch et al., 2012). The ancillary variables that
are required by these downscaling methods (various topographic
attributes) are used by the sampling techniques to identify loca-
tions where the soil moisture should be monitored. Then, the soil
moisture values at the monitored locations are used to define the
relationships between the topographic attributes and soil moisture
in the downscaling methods. The downscaling methods are then
used to produce estimates of the catchment-scale soil moisture
patterns from the spatial-average soil moisture and topographic
attributes at each catchment. Ultimately, the performance of the
sampling methods is evaluated by the ability of the two downscal-
ing techniques to reproduce the actual catchment-scale soil mois-
ture patterns at three application catchments (Tarrawarra, Satellite
Station, and Cache la Poudre) when supplied with data from
the sampling methods. As a secondary objective in this study, the
EMT model and EOF method are compared under a variety of the
data-limited conditions.

2. Methodology

2.1. Sampling methods

The cLHS method proposed in Minasny and McBratney (2006)
can be summarized as follows. To start, the values of the ancillary
variables at all locations on the desired fine-resolution grid within
the region of interest are organized into a matrix X of size N by K
where N is the number of locations and K is the number of ancillary
variables observed at each location. Any row in X corresponds to a
location in the catchment, and each column contains the values for
a particular ancillary variable. In the present application, the ancil-
lary variables are various topographic attributes that are required
by the downscaling methods (discussed in more detail later). Using
the values in each column of X, the ancillary variables are divided
into n bins where n is the number of desired samples (i.e. loca-
tions). For a given ancillary variable, the limits for the bins are de-
fined so that each bin contains an equal number of observed
values. Fig. 1a displays a hypothetical example where a single
ancillary variable is used and the range of the ancillary variable
has been divided into 3 bins in this manner. n locations are then
randomly selected from X producing a matrix x of size n by K that
contains the values of the ancillary variables at the selected loca-
tions. A particular row of x represents one of the selected locations.
An associated matrix g of size n by K is then created. An element of
g is associated with a particular bin number (1 to n) and a
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