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s u m m a r y

This article presents the use of stochastic methodology for quantitative analysis of variability in stream
flow discharge in response to fluctuations in lateral inflow rate, where the lateral inflow rate is consid-
ered to be the difference between rainfall and infiltration rates. In this work, we focus on the case where
the temporal correlation structure of the fluctuations in the lateral inflow rate can be characterized by the
statistics of random fractals. A closed-form expression quantifying the stream flow variability is therefore
developed to investigate the influence of the fractal dimension of lateral inflow process and the size of
time domain. It is found that the stream flow discharge variability increases with the time domain size,
while the fractal dimension of lateral inflow process plays a role in the smoothness of fluctuations in
stream flow discharge around the mean.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Understanding and quantifying the conversion of rainfall–
runoff process into stream flow discharge is one of the major tasks
in water resources engineering, especially for a long-term manage-
ment of available water resources. Temporal fluctuations in rainfall
are generally recognized as being affected by a wide range of nat-
ural physical processes, the details of which cannot be anticipated
precisely. Hence, there is a great deal of uncertainty associated
with the quantification of surface lateral inflow to the stream along
its reach as produced by the rainfall–runoff process. This prompted
us to investigate how the temporal fluctuations in the lateral
inflow rate influence the variability in the stream flow discharge.

Note that lateral inflow refers to any water added to the stream
due to effluent seepage from ground water, overland flow, inter-
flow or via small springs and seeps (e.g., Singh, 1995). This research
is primarily concerned with the case that the source of lateral
inflow is dominated by the rainfall. Therefore, the lateral inflow
rate in this work is defined as the difference between rainfall and
infiltration rates.

Rainfall events show significant variability on temporal scales.
However, some observations indicate that the temporal distribu-
tions of fluctuations in rainfall fields do exhibit the properties of

long-range correlation and scale invariance. These properties
greatly simplify the statistical characterization of rainfall fields at
time scales by using the concept of fractal objects (e.g., De
Michele and Bernardara, 2005; Hubert et al., 1993; Menabde
et al., 1997; Olsson et al., 1993; Schmitt et al., 1998; Venugopal
and Foufoula-Georgiou, 1996; Veneziano et al., 1996). In other
words, the temporal distribution of fluctuations in rainfall fields
can be modeled according to self-similar random processes and
their temporal correlation satisfies a power law (e.g., Hewett,
1986; Voss, 1985).

The surface lateral inflow to the stream is a direct consequence
of the rainfall–runoff process. There is a need to address the uncer-
tainty (variability) associated with the prediction of available
stream water resources, which is the task undertaken herein. In
the following analysis, the temporal fluctuations in the lateral
inflow rate is considered to be self-similar random fields such that
the temporal variability in the lateral inflow rate can be dealt with
using a fractal description, where the lateral inflow rate represents
the surface runoff mainly from rainfall.

In the following we present a stochastic analysis of one-
dimensional transient stream flow subject to uniformly distributed
lateral inflow along the side of the stream. The application of the
perturbation-based nonstationary spectral techniques will lead to
a closed-form solution for quantifying the variability in stream
flow discharge. This solution provides a basis for assessing the
impact of input parameters on the stream flow discharge
variability.
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2. Problem formulation

Unsteady flow in a stream has traditionally been formulated
based on the Saint–Venant system equations (e.g., Chow et al.,
1988). In practical applications, the local and convective accelera-
tions in the system equations are often neglected to simplify the
analysis. The exclusion of accelerations thus leads the system
equations to a single equation, known as the diffusion wave equa-
tion (e.g., Fan and Li, 2006; Gottardi and Venutelli, 2008; Moussa,
1996; Sivapalan et al., 1997; Sulis et al., 2010)
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where Q is the stream flow discharge, Dh and U are the hydraulic
diffusivity and wave celerity, respectively, and qR is the lateral
inflow rate (per unit stream length), which is considered to be uni-
formly distributed along the stream.

Eq. (1) is highly nonlinear due to the dependence of the diffusiv-
ity and celerity coefficients on the stream flow discharge Q, the
dependent variable of (1). However, it may be linearized in a
perturbation form based on the steady uniform reference values
of the flow discharge and flow cross-sectional area written as
(e.g., Lal, 2001; Moramarco et al., 1999; Yen and Tsai, 2001)
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where Q0 = Q�Q0, q = qR�q0, and Q0 and q0 represent the steady uni-
form initial values. For a wide rectangular channel, for example, the
diffusivity coefficient may be expressed in the form (e.g., Yen and
Tsai, 2001)
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where V0 and Y0 are the uniform flow velocity and depth, respec-
tively, S0 is the channel bed slope, F0 = V0/(gYh)0.5, and Yh is the
hydraulic depth. The celerity coefficient is given by (e.g., Yen and
Tsai, 2001)

U0 ¼
3
2

V0 ð4aÞ

using Chezy’s formula and

U0 ¼
5
3

V0 ð4bÞ

using Manning’s formula. Note that the term oq/oX has been omit-
ted from (2) due to the assumption of uniformly distributed
recharge.

In the analysis presented below, the lateral inflow representing
the source of stream flow is assumed to be a temporally correlated
random field (a stochastic process based on the time series). It
results in temporally correlated random fluctuations in stream
flow discharge. That is, the stream flow discharge, the output
(dependent variable) of the stream flow equation, is also treated
as a random field. As such, the perturbation Eq. (2) provides a
framework for quantifying the stream flow variability in terms of
the temporal variability of the lateral inflow.

3. Stream flow variability analysis

We consider a weakly stationary random lateral inflow field in
time so that the fluctuations in lateral inflow may be presented in
form of Fourier-Stieltjes integral as:

qðtÞ ¼
Z 1

�1
eixtdZqðxÞ ð5Þ

where x is the frequency and dZq is the complex random amplitude
of the fluctuations. The perturbed quantity of stream flow discharge
in (2) may be expressed by the Fourier-Stieltjes representation of a
nonstationary process (e.g., Li and McLaughlin, 1991) as:

Q 0ðX; tÞ ¼
Z 1

�1
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where UQq(X, t, x) is the transfer function.

Using (5) and (6), it follows from (2) that
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To gain a clear insight into the influence of the source variability
on the stream flow, we focus only on the case where the boundary
and initial conditions are deterministic (i.e., the case of lateral-
inflow-dominated stream). Thus, the stochastic perturbation
boundary and initial conditions associated with (7) take the forms:

UQqð0; tÞ ¼ 0 ð8aÞ

UQqðL; tÞ ¼ 0 ð8bÞ

UQqðX;0Þ ¼ 0 ð8cÞ

where L is the length of the stream. The system of Eqs. (7) and (8)
admits the following solution:
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where l ¼ U0L=D0; n ¼ X=L; q1 ¼ D0p2=L2; q2 ¼ U2
0=ð4D0Þ. A useful

approximation may be made for the case of q1t� 1. For this case,
the infinite series in (9) converges rapidly (e.g., Haberman, 1998)
and (9) becomes

UQq ¼ 2pU0
1þ e�l=2

p2 þ l2=4
eln=2 sinðpnÞ e

i-t � e�at

aþ ix
ð10Þ

where a = q1 + q2 = (Dh0p2 + l2/4)/L2. In conjunction with (9), (6) is
written as:
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Requiring from the representation theorem for Q0, one obtains
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where r2
Q is the variance of the stream flow discharge, E(�) stands

for the ensemble average, the asterisk denotes the operation of
complex conjugation, and Sqq(x) is the spectrum of the lateral
inflow perturbation.

As mentioned earlier, the temporal correlation structure of the
rate of lateral inflow is assumed described by the statistics of ran-
dom fractals. It has been demonstrated by Voss (1985) and Hewett
(1986) that the spectral density of the fractal objects follows the
power-law behavior. Hence, the spectrum of the lateral inflow
Sqq(x) in (12) has the form of

SqqðxÞ ¼ S0=xb ð13Þ

where S0 is the spectral density at x = 1, b is the spectral exponent
which can be related to the fractal dimension D. For one-
dimensional fractal objects, b = 5–2D and 1 < D < 2. The reader is
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