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s u m m a r y

Drought forecasting is an essential ingredient for drought risk and sustainable water resources manage-
ment. Due to increasing water demand and looming climate change, precise drought forecasting models
have recently been receiving much attention. Beginning with a brief discussion of different drought fore-
casting models, this study presents a new hybrid gene–wavelet model, namely wavelet–linear genetic
programing (WLGP), for long lead-time drought forecasting. The idea of WLGP is to detect and optimize
the number of significant spectral bands of predictors in order to forecast the original predictand
(drought index) directly. Using the observed El Niño–Southern Oscillation indicator (NINO 3.4 index)
and Palmer’s modified drought index (PMDI) as predictors and future PMDI as predictand, we proposed
the WLGP model to forecast drought conditions in the State of Texas with 3, 6, and 12-month lead times.
We compared the efficiency of the model with those of a classic linear genetic programing model
developed in this study, a neuro-wavelet (WANN), and a fuzzy-wavelet (WFL) drought forecasting models
formerly presented in the relevant literature. Our results demonstrated that the classic linear genetic
programing model is unable to learn the non-linearity of drought phenomenon in the lead times longer
than 3 months; however, the WLGP can be effectively used to forecast drought conditions having 3, 6, and
12-month lead times. Genetic-based sensitivity analysis among the input spectral bands showed that
NINO 3.4 index has strong potential effect in drought forecasting of the study area with 6–12-month lead
times.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Drought forecasting is an essential ingredient in watershed
management. In recent years, its importance is being intensified
owing to increasing water demand and looming climate change
(Mishra and Singh, 2010). The success of drought preparedness
and mitigation depends upon timely information on the drought
onset and propagation in time and space (Özger et al., 2012). This
information may be obtained through precise drought forecasting
models, which is normally generated using drought indices.

Many drought forecasting models have been developed in
recent years (e.g., Rao and Padmanabhan, 1984; Sen, 1990;
Bogradi et al., 1994; Lohani and Loganathan, 1997; Mishra and
Desai, 2005; Cancelliere et al., 2007; Modarres, 2007; Fernandez
et al., 2009; Özger et al., 2012). Mishra and Singh (2011) have
provided a comprehensive review on different drought forecasting
approaches.

In recent years, artificial intelligence (AI) techniques such as
artificial neural network (ANN), fuzzy logic (FL), and genetic
programing (GP) have been pronounced as a branch of computer
science to model wide range of hydro-meteorological processes
(Pesti et al., 1996; Whigham and Crapper, 2001; Dolling and
Varas, 2002; Morid et al., 2007; Kisi and Guven, 2010; Özger
et al., 2012; Nourani et al., 2013a). Successful application of fuzzy
rule-based modeling for short term regional drought forecasting
using two forcing inputs, El Niño–Southern Oscillation (ENSO)
and large scale atmospheric circulation patterns (CP), was
described by Pongracz et al. (1999). Mishra and Desai (2006) used
both recursive and direct multi-step ANNs for up to 6-month LT
drought forecasting and found that the recursive multi-step model
is the best suited for 1 month LT. When a LT longer than 4 months
was considered, the direct multi-step model outperformed the
recursive multi-step models. Morid et al. (2007) developed
an ANN-based drought forecasting approach with the LTs of
1–12 months using Effective Drought Index (EDI), SPI, and different
combinations of past rainfalls. The results indicated that forecasts
using EDI were superior to those using SPI for all LTs. Barros and
Bowden (2008) applied self-organizing maps and multivariate
linear regression analysis to forecast SPI at Murray-Darling Basin
in Australia up to 12 months in advance.
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Owing to the limited ability of the above-mentioned AI tech-
niques to forecast non-stationary phenomena, hybrid AI models
were developed and suggested to forecast drought and successful
results have also been reported (Kim and Valdes, 2003; Mishra
and Singh, 2010; Belayneh and Adamowski, 2012; Özger et al.,
2012; Belayneh et al., 2014). Mishra et al. (2007), using the SPI ser-
ies, developed a hybrid ANN-ARIMA model for drought forecasting
in Kansabati River Basin in India. The hybrid model was found to be
more accurate than individual stochastic and ANN models up to a
6-month LT. Bacanli et al. (2009) developed an adaptive neuro
fuzzy inference system (ANFIS) for drought forecasting using SPI
in central Anatolia, Turkey. The authors pointed out that the hybrid
method performs better than the classic ANN model. Özger et al.
(2012) developed a hybrid wavelet–FL (WFL) model for long lead
time drought forecasting using Palmer modified drought index
(PMDI) series across the State of Texas and compared the WFL
results with those of an ANN and a coupled wavelet–ANN (WANN)
models. They found that the WFL had a significant improvement
over the ad hoc FL, ANN, and hybrid WANN models. Belayneh
et al. (2014), using SPI time series, developed hybrid WANN and
wavelet-support vector regression (WSVR) models to forecast
long-term drought in the Awash River Basin of Ethiopia. They com-
pared the effectiveness of these models with those of ARIMA, ANN,
and ad hoc support vector regression models and stated that the
WANN model is the best one for 6 and 12-months LT drought fore-
casting in their study area.

Despite providing plausible forecasting accuracy, all the afore-
mentioned ANN-based models provide implicit formulations with
huge matrix of synaptic weights and biases. Thus, necessity for fur-
ther studies in order to develop not only precise but also explicit
models is still receiving serious attention. In recent years, different
variants/advancements of genetic programing (GP) approach has
been pronounced as a robust explicit method to solve wide range
of modeling problems in water resources engineering such as rain-
fall-runoff modeling (Dorado et al., 2003; Nourani et al., 2012),
evapotranspiration (Kisi and Guven, 2010), unit hydrograph deter-
mination (Rabuñal et al., 2007), sediment transport (Aytek and Kisi,
2008), sea level forecasting (Ghorbani et al., 2010), streamflow pre-
diction (Danandeh Mehr et al., 2013a) and others. A comprehen-
sive review on application of hybrid wavelet–AI models in
hydrology has been provided by Nourani et al. (2014). The authors
also highlighted and discussed the importance of available hybrid
models for drought forecasting. Moreover, our review indicated
that there is no research in the relevant literature examining the
performance of any hybrid GP technique in drought forecasting.
It is also important to understand different modeling methods as
well as their benefits and limitations (Mishra and Singh, 2011).
These are the main reasons inspired us to develop an explicit
model based on one of the advancements of GP namely linear
genetic programing (LGP) GP to forecast drought in this study.

It is already proven that the drought process contains high non-
stationary and long-term patterns (seasonality) and classic AI tech-
niques such as ANN and FL may not be sufficient for long LT
drought forecasting (Özger et al., 2012). Therefore, our study was
commenced with a data pre-processing, i.e. de-noising our predic-
tor time series using continuous wavelet transform technique, and
accomplished by a LGP–based model. In this study, based upon
lagged values of drought index across the State of Texas along with
NINO 3.4 index, symbolizing the sea surface temperature anoma-
lies, we developed a hybrid wavelet–linear genetic programing
(WLGP) model (here after gene–wavelet model) for long LT
drought forecasting. For this aim, we initially applied wavelet
transform to decompose the predictor time series into its major
sub-series and then we employed a LGP technique to make fore-
casts. The LGP component of the model can handle the nonlinearity
elements, while the wavelet component can deal with periodicity

of the hydro-climatic variables. Furthermore, the performance of
the proposed gene–wavelet model was compared with those of
hybrid WANN and WFL models previously reported by Özger
et al. (2012).

Since the black-box models are often case-sensitive, in the pres-
ent study, we do not attempt to claim or assert superiority of a par-
ticular model over the others. The main goal of this paper is, for the
first time, to introduce a new explicit gene–wavelet model (WLGP)
for drought forecasting.

2. Wavelet transform

Wavelet transform (WT) provides multi-resolution of a signal in
time and frequency domains and has been employed for studying
non-stationary time series, where it is difficult to detect the time of
occurrence of a particular event if Fourier transform (FT) is used
(Özger et al., 2012). In other words, while FT separates a signal into
sine-waves of various frequencies, WT separates a signal into
shifted and scaled version of the original (or mother) wavelet
(Özger, 2010). WT allows the use of long-time intervals for low
frequency signals and shorter intervals for high frequency signals
and is able to expose some statistical features of time series like
trend and jump that other signal analysis techniques such as FT
might miss (Danandeh Mehr et al., 2013a). Since the ENSO indica-
tors (such as NINO 3.4 index) and drought occurrence have long
time intervals to develop, low frequency components gain
importance in comparison with high frequency. High frequency
components of the NINO 3.4 index and PMDI series are detected
with lower scales that refer to a compressed wavelet (Özger
et al., 2012).

2.1. Continuous wavelet transform (CWT)

In mathematics, an integral transform (Tf) is particular kind of
mathematical linear operator, which has the following form:

Tf ðuÞ ¼
Z t2

t1
Kðt;uÞf ðtÞdt ð1Þ

where f(t) is an square-integrable function such as a continuous
time series and K is a two variable, t and u, function called kernel
(Danandeh Mehr et al., 2013b).

According to Eq. (1), any integral transform is specified by a
choice of the kernel function. If function K is chosen as wavelet
function, then CWT is (Mallat, 1998):

Tða; bÞ ¼ 1ffiffiffiffiffiffi
jaj

p
Z þ1

�1
W�
�

t � b
a

�
f ðtÞdt ð2Þ

where T(a, b) is the wavelet coefficients, W(t) is a mother wavelet
function, in time and frequency domain, and � denotes operation
of complex conjugate.

The parameter a can be interpreted as a dilation (a > 1) or con-
traction (a < 1) coefficient of the W(t) corresponding to different
scales of observation. The parameter b can be interpreted as a tem-
poral translation (or shift) of the wavelet function, which allows
the study of the signal f(t) locally around the time b (Wu et al.,
2009). The main property of wavelets is localized in both frequency
(a) and time (b), whereas the Fourier transform is only localized in
frequency (Danandeh Mehr et al., 2013b).

Appropriate selection of the type of mother wavelet to decom-
pose input time series is one of the important tasks of modellers. It
has been recommended that the suitable mother wavelet can be
selected according to the shape pattern similarity between the
mother wavelet and the investigated time series (Nourani et al.,
2009b; Danandeh Mehr et al., 2013a; Onderka et al., 2013). A
Brute-force search method has also been adopted as an alternative
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