Journal of Hydrology 517 (2014) 746-761

Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier.com/locate/jhydrol

Uncertainty of canal seepage losses estimated using flowing water balance with acoustic Doppler devices

Chad A. Martin¹, Timothy K. Gates*

Dept. of Civil and Environmental Engineering, Colorado State Univ., Fort Collins, CO 80523, USA

ARTICLE INFO

Article history: Received 11 March 2014 Received in revised form 9 May 2014 Accepted 31 May 2014 Available online 19 June 2014 This manuscript was handled by Konstantine P. Georgakakos, Editor-in-Chief, with the assistance of Alon Rimmer, Associate Editor

Keywords: Canal seepage Inflow-outflow Uncertainty Measurement Water balance Doppler

SUMMARY

Seepage losses from unlined irrigation canals amount to a large fraction of the total volume of water diverted for agricultural use, posing problems to both water conservation and water quality. Quantifying these losses and identifying areas where they are most prominent are crucial for determining the severity of seepage-related complications and for assessing the potential benefits of seepage reduction technologies and materials. A relatively easy and inexpensive way to estimate losses over an extensive segment of a canal is the flowing water balance, or inflow-outflow, method. Such estimates, however, have long been considered fraught with ambiguity due both to measurement error and to spatial and temporal variability. This paper presents a water balance analysis that evaluates uncertainty in 60 tests on two typical earthen irrigation canals. Monte Carlo simulation is used to account for a number of different sources of uncertainty. Issues of errors in acoustic Doppler flow measurement, in water level readings, and in evaporation estimates are considered. Storage change and canal wetted perimeter area, affected by variability in the canal prism, as well as lagged vs. simultaneous measurements of discharge at the inflow and outflow ends also are addressed. Mean estimated seepage loss rates for the tested canal reaches ranged from about -0.005 (gain) to 0.110 m³ s⁻¹ per hectare of canal wetted perimeter (or -0.043 to 0.95 m d⁻¹) with estimated probability distributions revealing substantial uncertainty. Across the tests, the average coefficient of variation was about 240% and the average 90th inter-percentile range was 0.143 m³ s⁻¹ per hectare (1.24 m d⁻¹). Sensitivity analysis indicates that while the predominant influence on seepage uncertainty is error in measured discharge at the upstream and downstream ends of the canal test reach, the magnitude and uncertainty of storage change due to unsteady flow also is a significant influence. Recommendations are presented for conducting field water balance tests to recognize and reduce uncertainty in canal seepage estimates.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Millions of kilometers of earthen canals traverse vast landscapes of irrigated regions to deliver the water that supports the world's most productive agriculture. Along the course of these canals, substantial portions of water often seep through the channel perimeter into the surrounding groundwater. Sharma (1975) estimated that irrigation canals and laterals in New Delhi lose 45% of the total diverted flow rate before water reaches agricultural fields. Similarly, Yussuff et al. (1994) and Tanji and Kielen (2002) estimated that seepage losses in semi-arid regions can account for 20–50% of the total flow volume in unlined earthen canals. USGS (1990) suggests that 17% of the water that was

E-mail address: tkg@engr.colostate.edu (T.K. Gates).

conveyed for irrigation in 1985 in the United States was lost to evaporation or seepage to groundwater, and Fipps (2005) estimated that conveyance efficiency from the point of diversion to the field in canals in the Lower Rio Grande Valley in Texas was 69.7%. A recent study by Kinzli et al. (2010), in which acoustic Doppler equipment was implemented to measure canal flow rates, found that earthen canals in the Middle Rio Grande Valley of New Mexico can lose more than 40% of the diverted water volume to seepage. Despite the variety of estimates, it is clear that significant volumes of water diverted for irrigation purposes never reach agricultural fields due to seepage.

Seepage from irrigation canals poses several problems to agricultural water management: (1) diminished water delivered to agricultural fields to meet evapotranspiration and salt leaching demands; (2) contribution to higher groundwater table elevations which often lead to salinity and waterlogging, with resulting crop yield depression, under cropped fields and non-beneficial water consumption under naturally-vegetated fields; (3) reduction in

HYDROLOGY

^{*} Corresponding author. Tel.: +1 970 491 5043; fax: +1 970 491 7727.

 $^{^{1}}$ Current address: URS Australia Pty Ltd, Level 17, 240 Queen Street, Brisbane, QLD4000, Australia.

747

ADCP	acoustic Doppler current profiler	Q
ADV	acoustic Doppler velocimeter	
A_P	canal wetter perimeter area	
A _{WS}	canal free-water water surface area	R
CC	Catlin Canal	St
C _i	hydraulic geometry coefficient for variable <i>i</i> deter-	t_1
~	mined from at-a-cross-section regression	t_2
C_i	component of hydraulic geometry coefficient for	t ₃
	variable <i>i</i> predicted by the "along-the-canal" deter-	t_4
	ministic trend equation for that location	TI
C'_i	random "along-the-canal" component associated	$\frac{I}{\pi}$
	with predicting hydraulic geometry coefficient for	1
	Valiable <i>i</i>	
C_{P1}, C_{P2}, C_{P3}	Dusing survey data	X
C	F using survey usid	()
c_{T1}, c_{T2}, c_{T3}	T using survey data	(2
CV	I_W using survey data coefficient of variation	
FIrm	relative elevation of a pressure transducer	()
h	canal flow depth	(2
H	canal stage	
HDS	canal stage measured at the downstream boundary	Λ
1103	of the canal test reach	4
Hus	canal stage measured at the upstream boundary of	Δ
05	the canal test reach	
IR	interpercentile range	Δ
LARV	Lower Arkansas River Valley	
Li	length of subreach <i>j</i> along the canal test reach	Δ
P	wetted canal perimeter area	,
p_{abs}	absolute water pressure	(
p_{baro}	barometric pressure	(
p_{gage}	gage water pressure	
PDF	probability distribution function	(
Q_D	diverted outflow rate from the canal test reach	``
Q_{DS}	flow rate through the downstream cross section of	Δ
0/	the canal test reach	$\overline{\Lambda}$
$Q'_{DS,1}$	flow rate at the downstream boundary of the	
	canal test reach at time t_1 estimated using Q vs.	
	H relationship (during "unmeasured" time period	
0/	Δl_B	Δ
$Q_{DS,2}$	now rate at time to estimated using Over Hirelation	84 13
	test federi at time l_2 estimated using Q vs. <i>H</i> federion-	с.
0.550	measured flow rate at the downstream boundary of	6ł
QDS,3-4	the canal test reach during unmeasured time period	6,
	$\Lambda t_{\rm p}$	51 51
0.	rate of evaporation from the water surface along the	U _I
QE.	canal test reach	21
0 _n	rate of precipitation through the water surface along	01
$\langle \psi \rangle$	the canal reach	8
0 ₅	seepage rate from the canal test reach	
\tilde{Q}_{US}	flow rate through the upstream cross section of the	5
	canal test reach	33
$Q_{US,1-2}$	measured flow rate at the upstream boundary of the	80
	canal test reach between t_1 and t_2 during unmea-	
	sured time period Δt_A	E _c
$Q'_{US,3}$	flow rate at the upstream boundary of the canal test	
*	reach at time t_3 estimated using Q vs. H relationship	ε_1
	(during "unmeasured" time period Δt_A)	61

Nomenclature

$Q_{US,4}^{\prime}$	flow rate at the upstream boundary of the canal test reach at time t_{4} estimated using O vs. H relationship
	(during "unmeasured" time period Λt_A)
RFHC	Rocky Ford Highline Canal
StDev	standard deviation
t_1	time at the start of the Q_{US} measurement
t_2	time at the end of the Q_{US} measurement
t ₃	time at the start of the Q_{DS} measurement
t_4	time at the end of the Q_{DS} measurement
TH_{el}	relative canal thalweg elevation
T_w	canal top width at the water surface
T_{w_j}	average canal top width over subreach j along the
	canal test reach
x	position along the thalweg axis of the canal test
	reach
$(\Delta H_{1-4})_{DS_j}$	canal stage change over Δt at the stage measurement
	the canal test reach
	the canal stage change over Δt at the stage measurement
$(\Delta n_{1-4})_{US_j}$	Called Stage Challee Over Δt at the Stage measurement
	canal test reach
	measured stage change at the downstream boundary
21105,1=5	of the canal test reach between t_1 and t_2
$\Delta H_{DS,2-3}$	measured stage change at the downstream boundary
55,2-5	of the canal test reach between t_2 and t_3
$\Delta H_{US,2-3}$	measured stage change at the upstream boundary of
00,2 0	the canal test reach between t_2 and t_3
$\Delta H_{US,2-4}$	measured stage change at the upstream boundary of
(the canal test reach between t_2 and t_4
$\left(\frac{\Delta Q}{\Delta H}\right)_{DS}$	change in flow rate with flow stage at the down-
() DS	stream boundary of the canal test reach, as devel-
$\left(\frac{\Delta Q}{\Delta H}\right)_{US}$	oped using flow rate and stage data
	change in flow rate with flow stage at the upstream
	boundary of the canal test reach, as developed using
ΔS	now rate and stage data
$\overline{\Delta t}$	rate of change of stored water volume within the ca-
Δt	flowing water-balance test duration
Δt	"upmeasured" time period for Our between to and to
Δt_A	"unmeasured" time period for Q_{DS} , between t_1 and t_2
Eu .	random error associated with measuring p_{abc} for use
On _{abs}	in estimating H
6н	random error associated with measuring p_{haro} for
• • buro	use in estimating H
$\mathcal{E}_{H_{SG}}$	random error in manual staff gage readings
ε_P	random error associated with measuring P "at-a-sta-
	tion"
$\mathcal{E}_{P_{trend}}$	random error in estimating <i>P</i> by projecting a linear
	trend line
$\mathcal{E}_{\mathbf{Q}_{DS,1}'}$	random error in estimating $Q'_{DS,1}$
$\epsilon_{Q'_{DS,1}}$	random error in estimating $Q'_{DS,2}$
$\varepsilon_{Q_{DS,3-4}}$	random error in estimating $Q_{DS,3-4}$
EQ _{US,1-2}	randomly generated flow rate error for estimation of
EQ' _{US,3}	
8-1	VUS,3 randomly generated flow rate error for estimation of
CQ' _{US,4}	
ETH	$\sim_{US,4}$ random error associated with estimating TH .
ETw	random error in measuring $T_{}$ "at-a-station"
01W	random error in measuring rw at a station

water quality as groundwater flows, resulting from canal seepage, pick up and transport salts, selenium, uranium, nutrients, and other constituents from the subsurface environment and into rivers and streams; and (4) larger flow rates diverted from streams

to meet field water requirements, leading to less in-stream flow (USGS, 1990; Burkhalter and Gates, 2005; Burt et al., 2010). A major step toward mitigation of these problems in any setting is estimation of the actual seepage losses that are occurring.

Download English Version:

https://daneshyari.com/en/article/6413025

Download Persian Version:

https://daneshyari.com/article/6413025

Daneshyari.com