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s u m m a r y

In this paper a methodology for the stochastic management of groundwater quality problems is pre-
sented, which can be used to provide agricultural advisory services. A stochastic algorithm to solve the
coupled flow and mass transport inverse problem is combined with a stochastic management approach
to develop methods for integrating uncertainty; thus obtaining more reliable policies on groundwater
nitrate pollution control from agriculture. The stochastic inverse model allows identifying non-Gaussian
parameters and reducing uncertainty in heterogeneous aquifers by constraining stochastic simulations to
data. The management model determines the spatial and temporal distribution of fertilizer application
rates that maximizes net benefits in agriculture constrained by quality requirements in groundwater
at various control sites. The quality constraints can be taken, for instance, by those given by water laws
such as the EU Water Framework Directive (WFD). Furthermore, the methodology allows providing the
trade-off between higher economic returns and reliability in meeting the environmental standards.
Therefore, this new technology can help stakeholders in the decision-making process under an uncer-
tainty environment. The methodology has been successfully applied to a 2D synthetic aquifer, where
an uncertainty assessment has been carried out by means of Monte Carlo simulation techniques.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Groundwater is the ultimate source of freshwater to sustain
many important agricultural production areas when surface water
sources have been depleted. Furthermore, irrigation is the most
important water use accounting for about 70% of the global fresh-
water withdrawals and 90% of consumptive water uses. Although
the development of an intensive agriculture represents one of the
main factors in the current economic development of many
regions, it has also become an important environmental issue in
recent years. This is because it poses many impacts and threats
to groundwater bodies, such as overdrafting, aquifer pollution,
impacts on downstream demands or impacts on Groundwater
Dependent Ecosystems (GDEs). Different water laws and policies
around the world deal with such problems. For instance, the EU
Water Framework Directive (EC, 2000) stipulates that groundwater
bodies must achieve a good chemical and quantitative status by a
set deadline.

However, the decision-making process in groundwater man-
agement protection is complex because of heterogeneous stake-
holder interests, multiple objectives, key drivers influencing the
agricultural market and farmer’s decisions, land-use/crop pattern
evolution and uncertain outcomes. A wide range of stakeholders
play an active role in water resources management. They range
from irrigation communities, government, river basin authority,
Non-Governmental Organisations (NGO’s), agri-business indus-
tries, farmers to electric power industries (because of groundwater
abstraction costs). Moreover, integrated water resources manage-
ment incorporates technical, scientific, political, legislative and
organizational aspects of a water system. Because of that, stake-
holders need new technologies and tools to help them in the deci-
sion-making process. This links with the main goal of this paper,
which is to present a hydro-economic modeling framework for
agricultural advisory services. Specifically, this work is intended
to analyze the influence of uncertainty in the physical parameters
of a heterogeneous groundwater diffuse pollution problem on the
results of management strategies, and to introduce methods that
integrate uncertainty and reliability in order to obtain strategies
of spatial allocation of fertilizer use in agriculture.
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The methodology is based on the coupling of a stochastic inverse
model to identify non-Gaussian parameters and to reduce uncer-
tainty in heterogeneous aquifers with a groundwater quality man-
agement model for dealing with non-point agriculture pollution.
This coupling entails the use of different models (groundwater flow,
mass transport, agronomic, economic and optimization models) to
assess the effect of uncertainties on the economically optimal deci-
sions. Then, the underlying biophysical processes of pollution for-
mation and pollution transport and fate are explicitly taken into
account. It should be mentioned that a small number of papers in
the literature have developed a similar approach as that here pre-
sented (e.g., Bakr et al., 2003). Furthermore, they were intended
to design pump-and-treat groundwater remediation strategies.

The stochastic inverse model allows identifying non-Gaussian
parameters and reducing uncertainty in flow and mass transport
predictions by constraining stochastic simulations to data, while
the optimization management model determines the spatial and
temporal distribution of fertilizer application rates that maximizes
net benefits in agriculture constrained by quality requirements in
groundwater at various control sites.

Inverse modeling has become an important and necessary step
in hydrogeological studies (e.g., Poeter and Hill, 1997). This is be-
cause the inability to characterize subsurface heterogeneity prop-
erly makes predictions of groundwater contamination highly
uncertain. Consequently, the predictions of management models
based on groundwater quality standards are also uncertain. The lit-
erature on groundwater inverse modeling mostly focuses on the
estimation of parameters and its underlying uncertainty. This is
because they are the most relevant factors affecting mass transport
predictions (Smith and Schwartz, 1981) and because conceptual
uncertainties are difficult to be formalized in a rigorous mathemat-
ical framework (Renard, 2007). Regarding the different groundwa-
ter parameters we have focused on the hydraulic conductivity,
owing to the fact that it is the paramount parameter controlling
the flow and solute transport in groundwater. In fact, it can vary
spatially by several orders of magnitude. For instance, the aquifer
at the Columbus Air Force Base in Mississippi, commonly known
as the Macrodispersion Experiment (MADE) site, is a strongly het-
erogeneous system with a variance of the natural logarithm of K of
nearly 4.5 (e.g., Rehfeldt et al., 1992).

Eventually, once the groundwater parameter uncertainty has
been strongly reduced by the inverse model, more reliable policies
can be defined using the hydro-economic model. It explicitly
integrates nitrate leaching and fate and transport in groundwater
with the economic impacts of nitrogen fertilizer restrictions in
agriculture.

The remaining of the paper is organized as follows: firstly, a
background of the stochastic inverse model and the management
model is presented; secondly, the methodology has been verified
on a 2D synthetic case. Finally, we have highlighted the advantages
of using the methodology for providing agricultural advisory ser-
vices to policy-makers.

2. Modeling framework

The methodology is based on the coupling of a stochastic in-
verse model to identify non-Gaussian parameters and to reduce
uncertainty in heterogeneous aquifers with a groundwater quality
management model for dealing with non-point agriculture pollu-
tion. An explanation of both models is provided below:

2.1. Stochastic inverse model (the GC method)

The GC method is a stochastic inverse modeling technique for
the simulation of conductivity (K) fields in aquifers which has been

developed to overcome several of the limitations found in the al-
ready existing techniques (Llopis-Albert, 2008; Capilla and Llo-
pis-Albert, 2009). The method was exhaustively verified on a 2D
synthetic aquifer (Llopis-Albert and Capilla, 2009a). In addition, a
3D application to the Macrodispersion Experiment (MADE-2) site,
on a highly heterogeneous aquifer at Columbus Air Force Base in
Mississippi (USA) was presented by Llopis-Albert and Capilla
(2009b); and also on a complex real-world case study in a frac-
tured rock site (Llopis-Albert and Capilla, 2010a). Furthermore, it
was extended to deal with independent stochastic structures
belonging to independent K statistical populations (SP) of fracture
families and the rock matrix, each one with its own statistical
properties (Llopis-Albert and Capilla, 2010b).

The method uses an iterative optimization procedure to simu-
late K fields honoring K measurements, secondary information ob-
tained from expert judgment or geophysical surveys, transient
piezometric head (h) data and concentration (c) measurements.
Travel time data can also be considered by means of a backward-
in-time probabilistic model (Neupauer and Wilson, 1999), which
extends the applications of the method to the characterization of
sources of groundwater contamination. The formulation of the
method does not require assuming the classical multi-Gaussian
hypothesis allowing the reproduction of strings of extreme values
of K that often take place in nature, being these formation features
crucial in order to obtain realistic and safe estimations of mass
transport predictions (Gómez-Hernández and Wen, 1998; Zinn
and Harvey, 2003; Llopis-Albert and Capilla, 2009b; Zhou et al.,
2013). In this sense, the probabilities of very short travel times
could be severely underestimated using the multi-Gaussian ap-
proach, since it implies the minimal spatial correlation of extreme
values. Then the multi-Gaussian approach may not reproduce
some geological settings, e.g., channeling that are critical for mass
transport. This may lead to travel times ten times slower than
those predicted by taking into account the non-Gaussianity feature
(Gómez-Hernández and Wen, 1998).

The method has been developed using a modified version of the
gradual deformation technique (Hu, 2000), and applying a
Lagrangian approach to solve the mass transport equation. This
allows avoiding numerical dispersion usually found in Eulerian ap-
proaches. The algorithm has been implemented for 3D transient
flow problems under variable density flow conditions, considering
the dispersion as a tensorial magnitude, and a first-order mass
transfer approach. Performing a Bernoulli trial on the appropriate
phase transition probabilities, the particle distribution between
the mobile domain and the immobile domain can be determined
(Salamon et al., 2006).

The iterative optimization process for constraining stochastic
simulations to data is carried out by doing non-linear combina-
tions of seed conditional realizations. These seed conductivity (K)
fields are already conditional to K and secondary data, and are gen-
erated by sequential indicator simulation. The a priori stochastic
structure of these K seed fields is defined by means of the local con-
ditional cumulative density functions (ccdf’s) and the indicator
variograms, thus allowing the GC method to adopt any Random
Function (RF) model. As a first step, the GC method builds linear
sequential combinations of non multiGaussian K fields that honor
K data:

Km ¼ a1Km�1 þ a2K2m þ a3K2mþ1 with K0 ¼ K1 ð1Þ

where subscripts stand for seed fields and superscripts for condi-
tional fields resulting from a previous linear combination That is,
at m iteration, the field Km�1, from the previous iteration, is com-
bined with two new independent realizations K2m and K2m+1. The
procedure requires combining at least three conditional realizations
at a time to ensure the preservation of mean, variance, variogram
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