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s u m m a r y

Streamflow forecasting plays a critical role in nearly all aspects of water resources planning and manage-
ment. In this work, Gaussian Process Regression (GPR), an effective kernel-based machine learning algo-
rithm, is applied to probabilistic streamflow forecasting. GPR is built on Gaussian process, which is a
stochastic process that generalizes multivariate Gaussian distribution to infinite-dimensional space such
that distributions over function values can be defined. The GPR algorithm provides a tractable and flexible
hierarchical Bayesian framework for inferring the posterior distribution of streamflows. The prediction
skill of the algorithm is tested for one-month-ahead prediction using the MOPEX database, which
includes long-term hydrometeorological time series collected from 438 basins across the U.S. from
1948 to 2003. Comparisons with linear regression and artificial neural network models indicate that
GPR outperforms both regression methods in most cases. The GPR prediction of MOPEX basins is further
examined using the Budyko framework, which helps to reveal the close relationships among water-
energy partitions, hydrologic similarity, and predictability. Flow regime modification and the resulting
loss of predictability have been a major concern in recent years because of climate change and anthropo-
genic activities. The persistence of streamflow predictability is thus examined by extending the original
MOPEX data records to 2012. Results indicate relatively strong persistence of streamflow predictability in
the extended period, although the low-predictability basins tend to show more variations. Because many
low-predictability basins are located in regions experiencing fast growth of human activities, the signif-
icance of sustainable development and water resources management can be even greater for those
regions.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Streamflow forecasting plays a pivotal role in water resources
planning and management. The capability to provide accurate
and reliable streamflow forecasts over a flow regime has a direct
impact on not only water allocation policies, but also sustainable
economic development in the area. A major challenge of stream-
flow prediction stems from the fact that streamflow is a temporally
lagged, spatial integral of runoff over a river basin (Milly et al.,
2005) and, thus, can exhibit strong nonlinear dependency on
hydrometeorological and anthropogenic factors. Existing methods
for streamflow forecasting fall into three broad categories: phys-
ics-based methods, time series methods, and machine learning
methods (Bourdin et al., 2012). Physics-based models are mathe-
matical abstractions of physical processes that govern the water
movement and storage in watersheds. These models typically re-
quire quantification and calibration of one or more conceptual

models with uncertain physical parameters, leading to the
challenge of equifinality (Beven and Freer, 2001). In addition, the
theoretical foundation of many physics-basedmodels is small-scale
physics, the application of which to larger watersheds is difficult
due to ‘‘the effects of spatial heterogeneity in landscape properties,
the inherent nonlinearity of many hydrological processes, and the
process interactions at all scales’’ (Kirchner, 2006; McDonnell et al.,
2007). Conventional time series methods are linear regression
models that are best suited for short-term forecasting based on
daily or weekly timescales, but not for long-term forecasting at
seasonal and annual timescales, neither can they handle nonlinear-
ity exhibited by rainfall-runoff models well (Hsu et al., 1995; Vogel
et al., 1999; Zealand et al., 1999). These and other challenges/defi-
ciencies associated with the traditional rainfall-runoff models and
time series analyses partly explain the continued interest of the
hydrologic community in machine learning methods.

Machine learning methods and, in particular, supervised learn-
ing methods, refer broadly to statistical techniques for developing
predictive models using training data. Unlike physics-based mod-
els, machine learning methods are data-driven and rely almost
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exclusively on information embedded in training datasets. Artifi-
cial neural network (ANN) is one of the earliest machine learning
methods adopted by the hydrologic community. Despite its popu-
larity in streamflow forecasting (e.g., Chang and Chen, 2001; Hsu
et al., 1995; Tokar and Markus, 2000), main issues of ANN include
its tendency to overfit training data and instability with short
training data records (Hsieh and Tang, 1998). An ultimate concern
of all supervised machine learning algorithms is related to their
generalization capability, which refers the capability of a trained
model to deliver similar predictive performance on data not seen
during training. Poor generalization may result from either overfit-
ting or underfitting.

Recent decades have seen a surge of interest in the develop-
ment of kernel-based machine learning methods. In particular,
the support vector machine (SVM) algorithm (Vapnik, 1995) was
introduced to address two challenges alluded in the above, namely,
(a) how to establish a relationship between the size of training data
and generalization performance of a trained model and (b) how to
incorporate such knowledge in the training process to prevent
overfitting. SVM projects the input data into a high or even infi-
nite-dimensional space, such that the projected training data exhi-
bit linearity and linear regression methods can be applied. An
elegant feature of SVM is that the actual form of nonlinear map-
ping does not need to be known, and only their inner products
(i.e., the so-called kernel function) are required to train an SVM
model. This is known as the ‘‘kernel trick’’ in machine learning,
which has served as a building block in all kernel-based methods
(Bishop, 2006).

Both the SVM and ANN are deterministic algorithms per se and
do not provide a direct quantification of prediction uncertainty. For
the latter purpose, a common strategy is to create an ensemble of
SVM or ANN models through certain resampling (e.g., bootstrap-
ping and boosting) or random initialization techniques, and then
use statistics of the ensemble models to quantify prediction perfor-
mance (Sun, 2013; Zhou, 2012). Although ensemble methods can
improve predictability of single models, they inevitably incur sig-
nificant computational overhead. Alternatively, the regression
problem may be cast into a probabilistic setting such that predic-
tion uncertainty can be assessed directly. The relevance vector ma-
chine (RVM), originally improvised by Tipping (2001), represents a
significant stride toward such direction.

RVM was designed to improve several deficiencies of the origi-
nal SVM, including (a) predictions are not probabilistic, (b) the
SVM solutions are not sparse enough, and (c) ad hoc procedures
are needed for selection of hyperparameters in the SVM (note: in
the current context, hyperparameters refer to parameters of the
kernel or covariance functions). Like the SVM, RVM is a kernel
method that parameterizes the unknown function as a weighted
sum of nonlinear basis functions in the feature space. Unlike the
SVM, RVM assumes that the weights are random variables and uses
a Bayesian framework to estimate the posterior distribution of
weights using data. So far, applications of the RVM in hydrological
forecasting have been relatively limited. A notable work is the use
of RVM in statistical downscaling of climate model outputs for pre-
dicting streamflow of several Indian river basins (Ghosh and
Mujumdar, 2008).

A main limitation of the RVM is that it can yield unreliable
results when a test data point is located far from the relevance
vectors (i.e., the solution of RVM), in which case the predictive dis-
tribution will be a Gaussian with mean close to zero and variance
also close to zero (Rasmussen and Williams, 2006). To mitigate the
aforementioned issue of RVM, the Gaussian Process Regression
(GPR) was introduced. The GPR is a full Bayesian learning algo-
rithm that has received significant attention in the machine learn-
ing community for applications such as model approximation,
multivariate regression, and experiment design (Girard et al.,

2003; Quiñonero-Candela and Rasmussen, 2005; Rasmussen and
Williams, 2006).

Gaussian processes (GP) assume that the joint probability
distribution of model outputs is Gaussian. The notion of GP is not
new in the hydrological literature. In fact, GP is underlying the
kriging algorithm in classical geostatistics, the autoregressive mov-
ing average models (ARMA), Kalman filters, geostatistical inversion
methods (Kitanidis, 1995), and radial basis function networks
(Bishop, 2006). The ensemble Kalman filter (Evensen, 2003) and
Gaussian particle filter (Kotecha and Djuric, 2003) may also be
regarded as sequential versions of GP-based learning algorithms.
Nevertheless, the GPR, which was originally formulated by
Rasmussen and his coworkers, provides a ‘‘principled, practical,
and probabilistic approach to learning in kernel machines’’
(Rasmussen, 1996; Rasmussen and Williams, 2006). The advantage
of GPR over many other machine learning methods lies in its seam-
less integration of several machine learning tasks, including hyper-
parameter estimation, model training, and uncertainty estimation;
thereby, the regression process is streamlined significantly and the
results are less affected by subjectivity and more interpretable.
Importantly, a suite of GPR tools are now available in the public do-
main for various applications (Rasmussen and Nickisch, 2010). In
comparison, similar methods mentioned in the above usually only
address certain aspects of the regression/prediction problem.

GPR can be considered a type of multivariate regression tech-
niques. In this sense, GPR is closely related to generalized least
squares, which has been used extensively in the so-called regional
regression analysis in hydrology (e.g., Reis et al., 2005; Stedinger
and Tasker, 1985; Vogel et al., 1999). However, most existing stud-
ies parameterize the predictand as a linear combination of (trans-
formed) predictors and then estimate the linear coefficients. In
contrast, GPR expresses the unknown as a linear combination of
nonlinear basis functions, as we shall see in Section 2. The applica-
tion of GPR in streamflow forecasting has been rather limited. The
Bayesian joint probability method proposed recently by Wang and
his coworkers (Robertson and Wang, 2012; Wang et al., 2009;
Wang and Robertson, 2011) used Bayesian inference to predict
seasonal streamflow. However, the authors mainly focused on
learning parameters of an enhanced Box-Cox transform using
Monte Carlo Markov chain sampling and did not adopt a kernel-
based machine learning approach in their work.

The main objective of this work is twofold. First, the efficacy of
GPR is demonstrated using data collected as part of the Model
Parameter Estimation project (MOPEX), which includes long-term
hydrometeorological time series from a large number of unregu-
lated basins located in different climatic regions across the U.S.
(Duan et al., 2006; Schaake et al., 2000). We show that a relatively
simple and fixed group of predictors can already give satisfactory
streamflow prediction over the majority of MOPEX basins at the
monthly scale. The performance of GPR is then compared to two
streamflow forecasting algorithms, autoregressive moving average
with exogenous variables (ARMAX) and multilayer perceptron
(MLP) neural network model. The former is a widely used linear
regression algorithm and the latter is a type of ANN algorithm.
For completeness, brief summaries of ARMAX and MLP algorithms
are provided in Appendices A and B, respectively. More details of
the two algorithms can be readily found in many textbooks (e.g.,
Haykin, 1994; Loucks et al., 1981).

The second purpose of this work is to offer a systematic analysis
of factors that can potentially affect basin streamflow predictabil-
ity, which has been the subject of immense interest in recent years
under topics such as hydrologic similarity (e.g., Berger and Entek-
habi, 2001; Blöschl and Sivapalan, 1995; Olden et al., 2012; Oudin
et al., 2010; Wagener et al., 2007), catchment-scale water and
energy partition (Sankarasubramanian et al., 2001; Zhang et al.,
2001), prediction at ungauged basins (Li et al., 2011; Patil and
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