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s u m m a r y

Traditional calibration of hydrological models is performed with a single objective function. Practical
experience with the calibration of hydrologic models reveals that single objective functions are often
inadequate to properly measure all of the characteristics of the hydrologic system. To circumvent this
problem, in recent years, a lot of studies have looked into the automatic calibration of hydrological mod-
els with multi-objective functions. In this paper, the multi-objective evolution algorithm MODE-ACM is
introduced to solve the multi-objective optimization of hydrologic models. Moreover, to improve the per-
formance of the MODE-ACM, an Enhanced Pareto Multi-Objective Differential Evolution algorithm named
EPMODE is proposed in this research. The efficacy of the MODE-ACM and EPMODE are compared with
two state-of-the-art algorithms NSGA-II and SPEA2 on two case studies. Five test problems are used as
the first case study to generate the true Pareto front. Then this approach is tested on a typical empirical
hydrological model for monthly streamflow forecasting. The results of these case studies show that the
EPMODE, as well as MODE-ACM, is effective in solving multi-objective problems and has great potential
as an efficient and reliable algorithm for water resources applications.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

To make precise streamflow predictions, hydrological model
calibration is always needed and is one of the most important is-
sues in the field of hydrology. Model calibration is performed to
find the optimal parameters which produce the best fit between
simulated and observed hydrologic characteristics. Model calibra-
tion is normally performed with a single objective function. How-
ever, practical experience with the calibration of hydrologic
models reveals that single objective functions are often inadequate
to properly measure all of the characteristics of the hydrologic sys-
tem (Vrugt et al., 2003). Therefore, it stands to reason that the cal-
ibration of hydrologic model should be performed with multiple
objective functions, which represent different dynamic aspects
inherent to the hydrological system. Gupta et al. (1998) have dis-
cussed the advantages of model calibration with multiple objective
functions. Different from single objective optimization, the result
of multi-objective optimization will not be a single best solution
but consists of a set of non-dominated, or Pareto optimal, solu-
tions. Generally, there are two ways of solving this multi-objective

calibration problem. One is to convert the multi-objective problem
to a single objective problem by assigning weights to different
objective functions. This can only generate one Pareto solution at
a time, making this method inefficient and time-consuming. The
other way is to solve the multi-objective optimization problem
directly based on the paradigm of non-dominated sorting. Non-
dominated sorting is performed with the concept of Pareto domi-
nance. If all objective functions of individual P are superior to those
of individual Q, it means that P dominates Q and the Pareto rank of
P is set higher (the rank value is smaller) than that of Q. If one or
more objective functions of individuals P are superior to those of
Q, while other objective functions of P are inferior to those of Q, this
indicates that P is non-dominated with Q and P is set the same Par-
eto rank as Q for this situation. With this sorting method, each indi-
vidual can be assigned a Pareto rank. This sorting scheme can take
into account all different optimization objective functions simulta-
neously. A complete multi-objective optimization allows analysis
of the trade-offs among the different objective functions and
enables hydrologists to better understand the limitations of the
current hydrologic model structure (Gupta et al., 1998). In recent
years, much research has been devoted to developing or introduc-
ing multi-objective algorithms for optimization of hydrologic mod-
els (Yapo et al., 1998; Vrugt et al., 2003; Gupta et al., 1998, 1999;
Boyle et al., 2000; Wagener et al., 2001; Xia et al., 2002; Leplastrier
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et al., 2002; Reed et al., 2003; Reed and Minsker, 2004; Khu and
Madsen, 2005; Gill et al., 2006; de Vos and Rientjes, 2007, 2008;
Price et al., 2012; Guo et al., 2013). The most famous algorithms
applied in multi-objective calibration of hydrological models are
Multi-Objective Complex Evolution (MOCOM-UA) method (Yapo
et al., 1998), Multiobjective Shuffled Complex Evolution Metropolis
(MOSCEM-UA) algorithm (Vrugt et al., 2003; de Vos and Rientjes,
2008; Guo et al., 2013), Nondominated Sorting Genetic Algorithm
II (NSGA-II) (Tang et al., 2005; Khu and Madsen, 2005; de Vos
and Rientjes, 2007, 2008; Zhang et al., 2010; Guo et al., 2013),
and the improved Strength Pareto Evolutionary Algorithm (SPEA2)
(Tang et al., 2005; Zhang et al., 2010; Guo et al., 2013). MOSCEM-
UA is an improved version of MOCOM-UA. And Tang et al. (2005)
and Guo et al. (2013) have shown that SPEA2 performs better than
MOSCEM-UA.

The multi-objective evolution algorithm Multi-Objective Differ-
ential Evolution with Adaptive Cauchy Mutation (MODE-ACM),
which is designed to solve the short-term multi-objective optimal
hydrothermal scheduling problem (Qin et al., 2010), is introduced
for parameter optimization of a hydrological model. Moreover, to
improve the performance of the MODE-ACM, an Enhanced Pareto
Multi-Objective Differential Evolution algorithm (EPMODE) is pro-
posed in this research. The features and capabilities of the EPMODE
algorithm are illustrated using two case studies, and the results are
compared with NSGA-II, SPEA2 and MODE-ACM.

The remainder of this paper is organized as follows: Section 2
presents the details of the proposed EPMODE algorithm and simple
introductions to NSGA-II, SPEA2 and MODE-ACM are also given;
Section 3 describes the performance metrics used in this research;
Section 4 demonstrates the methods about two case studies; Sec-
tion 5 presents comparisons of the results generated by the above
mentioned four algorithms through two case studies; and conclu-
sions are made in Section 6.

2. Multi-objective optimization algorithms

2.1. NSGA-II

NSGA-II, which is an improvement over the NSGA, was first pro-
posed by Deb et al. (2002). It is one of the most effective and effi-
cient algorithms for solving multi-objective problems. NSGA-II is
an extension of Genetic Algorithm (GA) to a multi-objective opti-
mization algorithm. The main evolving mechanism of NSGA-II is
based on GA. However, as each individual of the population is re-
lated to two or more different objective functions, we cannot
determine which individual is better with the selection operator
of GA. The selection operator of NSGA-II has to be done under
the concept of Pareto dominance.

NSGA-II overcomes limitations of the original version of the
algorithm by employing a fast non-dominated sorting approach
and a diversity preservation strategy. Suppose the population size
is N and the number of objective functions is M, the fast non-dom-
inated sorting method can reduce the computing time complexity
to O(MN2). In addition, NSGA-II uses a Crowded-Comparison Oper-
ator to preserve the diversity of the optimal non-dominated fron-
tier. With the Crowded-Comparison Operator, each point of the
frontier is assigned a crowded value, and each crowded value is
calculated according to its rank obtained from the previous fast
non-dominated sorting. If the size of frontier is larger than the pre-
defined size, then the point with highest rank and smallest
crowded value will be deleted from the set of frontier. This diver-
sity preservation strategy can improve the diversity of the non-
dominated solutions set. Besides, in the algorithm NSGA, the share
parameter is introduced to maintain the diversity of solutions set,
and this parameter must be predefined. It is usually cumbersome

to determine the proper parameter value. To circumvent this
problem, NSGA-II proposes a parameter-less diversity preservation
mechanism. For more details about NSGA-II, readers are encour-
aged to refer to Deb et al. (2002).

2.2. SPEA2

SPEA2 is an improved version over the SPEA (Zitzler and Thiele,
1999; Zitzler et al., 2001). SPEA2, like NSGA-II, can be treated as an
extension of GA to a multi-objective optimization framework, but
the operators of SPEA2 are designed more suitable and simpler
for computation than NSGA-II (as NSGA-II must predefine a proper
share parameter). It overcomes limitations of the original version
of the algorithm by using an improved fitness assignment and
diversity preservation using k-means clustering. Similar to SPEA,
SPEA2 also contains a regular population and an archive (used
for retaining the non-dominated solutions). The fitness of SPEA2
is determined by the strengths of its dominators in both archive
and population, as opposed to SPEA where only archive members
are taken into account. The archive size is set in advance. When
the size of archive is larger than the predefined size, the diversity
preservation operator is activated. It promotes diversity by itera-
tively removing the individual that has the minimum distance
from its neighboring solutions. For more detailed descriptions of
SPEA2, readers can refer to Zitzler and Thiele (1999) and Zitzler
et al. (2001).

2.3. MODE-ACM

The evolution scheme of MODE-ACM is based on the differential
evolution algorithm (Storn and Price, 1995, 1997). It includes four
operators: crowded-comparison operator, archive update operator,
differential evolving operator and adaptive Cauchy mutation oper-
ator. The crowded-comparison operator is the same as NSGA-II.
The diversity preservation strategy of NSGA-II is adopted to updat-
ing the archive set. In each generation, the first rank solutions of
the regular population are added to the archive individually, while
the dominated solutions are removed from the archive. If the ar-
chive size is larger than predefined size, the crowded-comparison
operator is activated to remove solutions with smaller crowded
distance. Although the differential evolving algorithm converges
fast and identifies the optimal solutions in the feasible space, it also
suffers from the premature convergence problem. In essence, the
cause of this problem is that the diversity of the population de-
creases along with the evolutionary process, and the algorithm
cannot jump out of the local optimum and search new feasible
space. From the definition of the differential evolving algorithm,
it can be noted that if the differences between each individual
are very small, the differential evolving algorithm mutation and
crossover operators nearly cannot generate new individuals. If
the algorithm has not converged to the global optimum, this indi-
cates that a local optimum has constrained the algorithm. The
adaptive Cauchy mutation operator is used to avoid premature
convergence of the algorithm. In every h generations (h is usually
set to 5 or 10), the diversity of each dimension in decision variable
space is calculated. If the diversity of ith-dimension is smaller than
the predefined threshold, the adaptive Cauchy mutation operator
will be activated to add a small disturbance to that dimension.
Generally, intense mutation (intense mutation means large range
of magnitude shifts) can increase the probability of escaping the lo-
cal optimum; however, overly intense mutation may affect the
convergence performance of the algorithm. Therefore, the muta-
tion operator is designed to be adaptive, allowing more intense
mutation at the beginning while less intense mutation at the
end. For more detailed descriptions of MODE-ACM, readers can re-
fer to Qin et al. (2010).
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