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s u m m a r y

Many real water resources optimization problems involve conflicting objectives for which the main goal
is to find a set of optimal solutions on, or near to the Pareto front. E-constraint and weighting multiob-
jective optimization techniques have shortcomings, especially as the number of objectives increases.
Multiobjective Genetic Algorithms (MGA) have been previously proposed to overcome these difficulties.
Here, an MGA derives a set of optimal solutions for multiobjective multiuser conjunctive use of reservoir,
stream, and (un)confined groundwater resources. The proposed methodology is applied to a hydraulically
and economically nonlinear system in which all significant flows, including stream-aquifer-reservoir-
diversion-return flow interactions, are simulated and optimized simultaneously for multiple periods.
Neural networks represent constrained state variables. The addressed objectives that can be optimized
simultaneously in the coupled simulation–optimization model are: (1) maximizing water provided from
sources, (2) maximizing hydropower production, and (3) minimizing operation costs of transporting
water from sources to destinations. Results show the efficiency of multiobjective genetic algorithms
for generating Pareto optimal sets for complex nonlinear multiobjective optimization problems.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Most optimization problems for conjunctive use of surface water
and groundwater involve multiple objectives. In single objective
optimization, one attempts to obtain the mathematically best deci-
sion that is hopefully the global minimum or the global maximum
depending on the optimization problem. In an optimization prob-
lem having conflicting multiple objectives, no single solution is best
(global minimum or maximum) with respect to all objectives. For a
typical multiobjective optimization problem, there exists a set of
solutions, known as Pareto-optimal solutions, or nondominated
solutions (Hans, 1988) that are superior to all other solutions in
the search space when all objectives are considered, but are inferior
to some solutions in terms of one or more objectives.

Because none of the solutions in the nondominated set are
absolutely better than any other, any one of them might be an
acceptable solution, depending upon personal preferences or fac-
tors not included within the optimization problem. A solution pre-
ferred by one water manager may not be acceptable to another
manager or in a changed environment. It aids decision makers to

know numerous alternative solutions within or near the true Par-
eto-optimal set (Srinivas and Deb, 1995).

We can classify optimization methods into two general catego-
ries; (1) classical methods such as linear programming (LP),
nonlinear programming (NLP), and dynamic programming (DP)
and (2) evolutionary or heuristic methods. Most published con-
junctive use optimization works employ classical optimization
methods (Peralta et al., 1992; Ejaz and Peralta, 1995; Belaineh
et al., 1999; Barlow et al., 2003; Vedula et al., 2005; Pulido-Velaz-
quez et al., 2006, 2008; Bharati et al., 2008; Peng et al., 2012). How-
ever, the classical optimization methods sometimes have
difficulties with extremely nonlinear systems and do not directly
yield alternative optimal solutions.

On the other hand, evolutionary methods such as Genetic
Algorithms (GAs) can solve optimization problems having nonlin-
ear, nondifferentiable, or even discontinuous functions (Goldberg,
1989). GAs do not require derivatives but use the objective function
directly. Aly and Peralta (1999) showed that GA computed a better
strategy than formal mixed integer nonlinear programming for a
groundwater cleanup problem. Rogers et al. (1995) used a combina-
tion of artificial neural networks (ANNs) and GA that involved less
computational burden and more flexibility than mathematical pro-
gramming methods. Nicklow et al. (2010) provide a comprehensive
review of the applications of GAs in the field of water resources
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management. Simple GAs (SGAs) have been applied to several
single objective optimization problems (Safavi et al., 2009).

Traditional multiobjective optimization techniques (weighting
and E-constraint), convert a multi-objective problem into a single
objective problem, and employ classical or heuristic optimization
methods (Mcphee and Yeh, 2004; Vamvakeridou-Lyroudia et al.,
2005; Karamouz et al., 2005, 2007). These techniques identify only
one Pareto optimal solution per optimization. Furthermore, opti-
mal solutions obtained via weighting method depend upon user-
selected weights. Also, because of the need for inputting reason-
able bounds for all objectives, as the number of initial objectives
increases, E-constraint use can become difficult.

To overcome these weaknesses, multiobjective evolutionary
algorithms such as Multiobjective Genetic Algorithms (MGA) have
been developed. MGAs can address all objectives simultaneously
without the need to convert them into a single objective problem.
Also, they can find a set of optimal solutions in a single run. MGAs
have been applied to multiobjective water resources problems (Rit-
zel et al., 1994; Cieniawski et al., 1995; Reed et al., 2000; Reddy and
Kumar, 2006; Yang et al., 2009; Penn et al., 2013). Bazargan-Lari
et al. (2008) optimized conjunctive use of surface water and ground-
water with conflicting objectives using an MGA. However, they did
not explicitly model surface water flows during optimization. Fayad
et al. (2012) present a single two-objective pareto optimal curve of
MGA-developed solutions for managing a nonlinear groundwater
and surface water system. For that two-objective problem they
could have used the E-constraint method instead of an MGA.
Extending the approach of Fayad et al. (2012), here we address a
three-objective optimization problem that benefits from multiob-
jective heuristic optimization for solution. We detail the process
of developing multiple ranks of pareto optimal solutions for three
scenarios and illustrate visualizations of three-dimensional objec-
tive responses. We use a numerical model and artificial neural net-
works to simultaneously model all significant flows, interactions,
and heads in the nonlinear reservoir, stream, and multilayer aquifer
system. Decision variables include: reservoir releases, and diver-
sions from reservoir, stream and aquifer. Diversions for a time step
are computed while considering all previous and simultaneous dy-
namic return flows to stream and aquifer resulting from previous
decisions. Objective function components are nonlinear due to
hydraulics and economics.

Subsequent sections briefly explain the applied MGA, and detail
the study area and methodology. Finally, we present the optimiza-
tion results and conclusion.

2. Employed MGA

MGAs are a subset of MultiObjective Evolutionary Algorithms
(MOEAs), which use a population-based search. MOEAs are attrac-
tive in multiobjective problems because they find many Pareto
optimal solutions in a single run. Developed MOEAs include: Vec-
tor Evaluated Genetic Algorithm (VEGA) (Schaffer, 1985), Niched
Pareto Genetic Algorithm (NPGA) (Horn et al., 1994), Nondominat-
ed Sorting Genetic Algorithm (NSGA) (Srinivas and Deb, 1995),
Strength-Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele,
1999), and Nondominated Sorting Genetic Algorithm-II (NSGA-II)
(Deb et al., 2002).

Deb (2001) presents details of multiobjective optimization
using evolutionary algorithms. Zitzler et al. (2000) compares vari-
ous MOEAs, and Reed et al. (2013) diagnostically assesses different
MOEAs.

To demonstrate the comprehensive linking of an MGA opti-
mizer with numerical and neural network simulators, the present
work employs an NSGA for optimizing conjunctive use. NSGA uses
a ranking selection method to emphasize current nondominated

points, and a sharing function method to maintain diversity in
the population. To do that, NSGA first calculates the objectives val-
ues for all population in a generation. Then, current nondominated
individuals are (1) identified and selected from the population, and
considered as the individuals of the first front (or first level of non-
domination), (2) assigned a large dummy fitness value, and (3)
shared with their fitness values (as described below). The purpose
of sharing is to degrade the fitness values of the similar solutions
(which exist close to each other in search space) that helps to
emphasize the solutions in less crowded regions and maintain
population diversity.

For implementing sharing, Eq. (1) is used. The sharing function
value between individuals i and j in a front is calculated by:

shðdijÞ ¼
1� dij

rshare

� �2
if dij < rshare

0 otherwise

8<
: ð1Þ

here dij is the phenotypic distance between two individuals i and j
in the current front and rshare is a parameter called niche size.
The niche count of individual i is calculated by adding the sharing
function values (Eq. (1)) for all individuals around individual i
(including i itself) in the current front. Finally, the shared fitness va-
lue of individual i is calculated by dividing its dummy fitness value
by its niche count. In similar process, the shared fitness value of
other individuals in the current front is calculated.

In fact, if dij between two individuals in a front is less than rshare,
the fitness values of those individuals will be degraded. Note that
niche count for all individuals is equal or more than one (because
sharing function value (Eq. (1)) for individual i with itself is
sh(dii) = 1). Then, the more individuals around individual i exist
in distance less than rshare, the higher niche count for individual i
is obtained, and consequently the lower shared fitness value for
individual i is calculated.

After calculating the shared fitness value of the individuals in
the first front, these individuals are ignored temporarily while
the rest of population is processed to identify individuals for the
second nondominated front (or second level of non-domination).
These new sets of points are then assigned a new fitness value that
is kept smaller than the minimum shared fitness of the previous
front and then their fitness values are shared similar to the process
mentioned for the first front. This process continues until the en-
tire population is classified into several fronts and all individuals
have shared fitness values. Afterwards, normal SGA reproduction
occurs (including crossover and mutation) and the population is
reproduced according to the shared fitness values of the individu-
als. Fig. 1 shows that the NSGA algorithm is similar to a simple GA
except for the classification of nondominated fronts and the shar-
ing operations (Srinivas and Deb, 1995).

Deb and Goldberg (1989) showed that for an m-parameter func-
tion, rshare may be calculated as:

rshare ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
n¼1ðxn;max � xn;minÞ2

q
2

ffiffiffi
qm
p ð2Þ

here q is the number of peaks in the solution space.
In general, deciding on the optimum population size is a chal-

lenging issue in GA. For NSGA, Mahfoud (1995) proposed Eq. (3)
to compute a lower bound on population size required to maintain
a fixed number of niches for various sharing models.

Population size lower bound ¼
ln 1�c1=G

c

� �
ln c�r

c

� � ð3Þ

here G = number of generations, c = number of niches (peaks),
c = level of confidence to maintain c niches for at least G genera-
tions, r = minimum fitness/maximum fitness (0.0 6 r 6 1.0).
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