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s u m m a r y

We introduce and compare two different approaches to estimate mean areal rainfall intensity in urban
catchments. Both methods are based on the same lumped hydrological model that is calibrated before-
hand. The first method uses a reverse model, i.e. an inverse formulation of a rainfall–runoff model. Rain-
fall intensities and their uncertainties are estimated from runoff data only. The second method estimates
parameters of a rainfall error model using a Bayesian approach. It requires measurements of both runoff
and rainfall. Although the two approaches are conceptually rather different, they address the same issue
– the quantification of areal rainfall intensities and their related measurement errors – and a comparison
is hence of interest. The merits and faults of the two methods are discussed. Results show that both meth-
ods provide best estimates of hyetographs with maximum intensities and total depths in a realistic order
of magnitude, whereas the uncertainty of rainfall estimated with the reverse model is rather large.

� 2014 Published by Elsevier B.V.

1. Introduction – estimation of rainfall errors

Reliable information about rainfall intensity as the driving force
of many relevant processes in urban catchments and drainage sys-
tems is of great importance. Rainfall is highly variable in space and
time, and this variability is assumed to have a great influence on
runoff quantity and quality at the outlet of a typical urban catch-
ment. It should therefore be considered in simulation models
(see e.g. Schellart et al., 2012; Schilling, 1984).

For many applications in urban drainage lumped conceptual
models are used. These models are usually based on areal rainfall
as model input, i.e. rainfall is assumed to be uniform in space. Rain
gauges as common devices for rainfall observation perform point
measurements, thus it is difficult to get information about the spa-
tial variability and areal rainfall. Areal rainfall for a catchment can
be estimated from several rain gauges by interpolation. However,
as the rain gauge network is usually sparse with respect to the size
of urban catchments, data from a single rain gauge is often
assumed to represent areal precipitation and used as model input.

Alternative methods such as rainfall radar (Einfalt et al., 2004;
Marshall et al., 1947), precipitation estimates using satellite data
(Kidd and Levizzani, 2011; Stephens and Kummerow, 2007) or
microwave links (Messer et al., 2006) provide information about
the spatial variability, but their accuracy is still limited as they
estimate rainfall indirectly.

To improve model results, methods to estimate the rainfall
error, i.e. the error of the rainfall data used as model input, have
been developed. They range from simple approaches as areal
reduction or correction factors (Vaes et al., 2005) to determine
design storm intensities to very sophisticated methods based on
dynamic error models, considering variation of the rainfall errors
with time (e.g. Vrugt et al., 2008).

In this paper, we introduce and compare two model based
methods to estimate rainfall with the purpose to determine the
‘‘true’’ areal rainfall and its uncertainties. The two methods
estimate areal rainfall based on a hydrological model that is
calibrated prior to rainfall estimation. They are conceptually rather
different and have different data requirements. However, a com-
parison is interesting as they both address the important question
of areal rainfall estimation.

The first method is based on a reverse model, i.e. a model to
simulate rainfall based on measured runoff. The reverse model is
an inverse formulation of a lumped rainfall–runoff model. Net
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areal rainfall intensities and their uncertainties are estimated
based on runoff data and corresponding uncertainties by Monte
Carlo (MC) simulation. No further model inputs are required. The
second method uses a rainfall error model in addition to a rain-
fall–runoff model. Parameters of the error model representing
rainfall measurement errors are estimated by Bayesian inference,
i.e. a Markov-Chain Monte Carlo (MCMC) approach, based on mea-
surements of both rainfall and runoff. Both methods are based on
the same lumped conceptual model. However, whereas the reverse
model estimates the rainfall using runoff data only, the error model
considers also rain gauge data. The comparison of the two methods
is performed by estimating areal rainfall in an urban catchment
drained by storm sewers in Lyon, France.

Applications of reverse models to estimate rainfall in the
context of urban drainage applications have been described by
Marceau (1997) or Leonhardt et al. (2012). In these examples,
equations of lumped rainfall–runoff models were rearranged to
estimate areal rainfall from measured runoff. In both cases, the ap-
proach was used in the context of real time applications, i.e. rainfall
intensities are estimated online based on runoff measurements
from the past up to the current time. This implies some shortcom-
ings, most important the required smoothing of runoff measure-
ments. Another approach can be found in Hino (1986). As all
rainfall intensities of an entire event are estimated simultaneously,
it is limited to offline applications. He compared smoothed least
squares and linear programming to estimate hourly rainfall in a
natural catchment. However, physically meaningful results (i.e. po-
sitive rainfall) could only be obtained at the expense of strong
smoothing. The method presented in this paper is also based on
simultaneous estimation of the entire hyetograph using the least
squares method. To ensure physically meaningful results an
inequality constraint is imposed. Additionally, uncertainty in run-
off measurements is considered to estimate rainfall uncertainties.
The method is applied to high resolution runoff data from an urban
catchment to estimate rainfall intensities in two-minute time
steps.

Rainfall errors are considered as an important uncertainty
source in hydrological models, but only recently, contributions
are made aiming to address them explicitly in model calibration
(e.g. Kavetski et al., 2006a,b; Reichert and Mieleitner, 2009; Renard
et al., 2011). These studies incorporated rainfall uncertainty in
hydrological model calibration based on the Bayesian total error
analysis (BATEA) framework developed by Kavetski et al.
(2006a,b). BATEA relies on a hierarchical Bayesian model to handle
uncertainty in terms (e.g., rainfall) that are represented by error
models using latent variables. The rainfall errors are computed in
the calibration as other model parameters. The method presented
in this paper also relies on a Bayesian approach, however, is not
in the context of model calibration. In contrast to other applica-
tions that determine model parameters and rainfall errors
together, this study is based on a pre-calibrated hydrological
model and thus only rainfall errors need to be computed using
the Bayesian method. To the best of the authors’ knowledge, this
is the first time rainfall error estimation is performed using the
Bayesian method independent of model calibration.

Although this paper focuses on the introduction of the two
methods, some possible applications should be mentioned. The
estimated rainfall can be used as input to other lumped models,
e.g. to simulate stormwater runoff quality. For those purposes,
estimated areal rainfall might be more suitable than data from a
single rain gauge. The estimated rainfall can furthermore be used
to assess the quality or representativeness of the rain gauge data.
The reverse model can also be used to fill rainfall data gaps.
Furthermore, estimations of areal rainfall and its uncertainty might
be of interest for the calibration and evaluation of indirect
measurement methods. However, a data set of rainfall measure-

ments is required for model calibration prior to application and
rainfall estimates based on model approaches should not be inter-
preted independently of a model.

2. Methodology

The reverse model and the error model aiming to estimate areal
rainfall, are based on the same hydrological model concepts. The
conceptual hydrological model parameters are calibrated by a state
of the art procedure, based on a calibration data set comprising
rainfall and catchment runoff data. The reverse model is then
applied to an evaluation data set. For the same data set, the rainfall
error model is estimated and rainfall errors are computed.

This section describes the conceptual rainfall–runoff model as
well as the methods used to estimate areal rainfall and its uncer-
tainty, respectively, i.e. the reverse model and the error model.
Model calibration is not the main scope of this paper as it is a
pre-process for the application of the two methods. We therefore
describe the calibration of the model parameters in the next
section together with the case study catchment and the data.

2.1. Conceptual hydrological model

As already mentioned, a lumped conceptual hydrological model
is considered in this study. The model consists of two parts: a rain-
fall loss component and a routing function. The gross rainfall is
transformed to net rainfall after rainfall loss deduction. The net
rainfall is then fed into the routing function to simulate runoff.

The rainfall loss incorporates an initial loss and a proportional
loss. It is formulated as:

LðtÞ ¼ r if
R t

t¼0 rdt 6 L0

rpcons if
R t

t¼0 rdt > L0

(
ð1Þ

where L(t) is the rainfall loss (mm/h), r (mm/h) is the rainfall inten-
sity, L0 and pcons are the two model parameters representing the
initial loss (mm) and the proportional loss (–). Net rainfall rnet can
then simply be computed as follows:

rnetðtÞ ¼ rðtÞ � LðtÞ ð2Þ

The routing function is represented by two cascaded linear
reservoirs. The net rainfall rnet is converted to the inflow qin,1 to
the first reservoir with a lag time Tlag by multiplication with the
impervious catchment area A:

qin;1ðtÞ ¼ rnetðt � TlagÞA ð3Þ

A linear reservoir has its outflow qout varying linearly with its
storage volume V:

qoutðtÞ ¼ VðtÞ=K ð4Þ

where the parameter K (min) is called reservoir constant. Eq. (4) is
combined with an equation of continuity:

qinðtÞ � qoutðtÞ ¼ dVðtÞ=dt ð5Þ

The analytical solution of Eq. (5) can be derived by integration
of the differential equation over the time interval [t � Dt, t]:

qoutðtÞ ¼ exp �Dt
K

� �
qoutðt � DtÞ þ 1� exp �Dt

K

� �� �
qinðtÞ ð6Þ

A second linear reservoir is placed in series after the first reser-
voir. The reservoir constants of the two cascaded reservoirs are set
to the same value because they are heavily correlated when deter-
mining them in calibration according to some preliminary tests. A
baseflow qb to account for dry weather flow is simply added to the
outflow from the second reservoir qr as a contribution to the total
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