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s u m m a r y

Uncertainty assessment is becoming one of the main topics in hydrology and water resources. In this
study, an Interval-Deviation Approach (IDA) was designed and incorporated into the process of model
evaluation. The proposed IDA was validated in a real application of the Soil and Water Assessment Tool
(SWAT) and Generalized Likelihood Uncertainty Estimation (GLUE) in the Three Gorges Reservoir Area
(TGRA), China. Compared with the traditional point-to-point comparison between measured and pre-
dicted data, the main superiority of the IDA is its innovative theory that models should be evaluated
by each absolute distance between the paired uncertainty intervals or probability distribution for each
measured and predicted data. In addition, the IDA can be used to quantify the possible range of model
performance in a real application of the SWAT. This proposed IDA can be useful for error form indicators
and models by providing a substitute method to facilitate enhanced evaluation of watershed models
within an uncertainty framework.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Hydrology and water quality (H/WQ) models are essential tools
for developing watershed programs, such as Total Maximum Daily
Load (TMDL) and the Water Framework Directive (WFD) (Stow and
Borsuk, 2003; Panagopoulos et al., 2012). The confidence that we
have in these models depends on how well the models match
the real system that they are intended to represent (Mediero
et al., 2011). However, the meteorological-, geological-, hydrologi-
cal-, and ecological processes at basin scale are notably complex
and are not always well known (Renard et al., 2010; Beven and
Alcock, 2012). Faced with such insufficient knowledge and natural
randomness, uncertainty becomes an inherent part of watershed
modeling (Beven and Alcock, 2012).

Prediction uncertainty is a major concern and has been rou-
tinely incorporated as a key part of TMDL plans (Renard et al.,
2010). Many researchers have focused on prediction uncertainty,
specifically addressing the sources of uncertainty (Shen et al.,
2012a), uncertainty propagation (Naranjo et al., 2012), evaluation
methods (Zhang et al., 2011), uncertainty expression (Zheng and

Keller, 2007) and the control of uncertainty (Beven et al., 2008).
Beck (1987) reported that residual uncertainty exists even with
the best model structure and input data. Additionally, measure-
ment uncertainty may stem from errors in flow measurements
and water quality sample collection (Harmel and King, 2005;
Howden et al., 2011). Given the river discharge data, errors from
different sources such as river stage measurement or the interpo-
lation of the rating curve, affect the measured data (Di Baldassarre
and Montanari, 2009). In a thorough review (Harmel et al., 2006),
several potential errors in the H/WQ measured data were com-
piled, indicating that appreciable inherent errors exist in the mea-
sured data even when following strict quality assurance and
quality control (QA/QC) guidelines (Beven et al., 2012).

Model evaluation, in terms of calibration and validation, is a
critical step in model application (Guinot et al., 2011). Model cali-
bration is the process of estimating model parameters using a pair-
wise comparison between the predicted and measured data, while
the validation process involves running the well-calibrated model
to check its performance. In traditional applications, model evalu-
ation is usually conducted by a regression measure, most com-
monly the point-to-point comparison of predicted and measured
data (Westerberg et al., 2011). The multi-objective functions,
which usually considered the variety of hydrological events that
may occur in a basin, are also used to calibrate models by the
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(predicted) point-to-(measured) point comparison (Kollat et al.,
2012; Naranjo et al., 2012). To acknowledge model uncertainties,
Beven (2006) proposed a formal structure for using limits of
acceptability based on set theory and the idea of equifinality. In
this case, the deviation calculations between the predicted and
measured data can be estimated within the framework of General-
ized Likelihood Uncertainty Estimation (GLUE) or the Bayesian
method (Zhang et al., 2009b; Gong et al., 2011). However, it is
important to mention that such point-to-point methods, are not al-
ways exact because the predicted and measured data, are typically
associated with a certain confidence interval (CI) or probability dis-
tribution function (PDF) when subject to random variability (Zhang
et al., 2009a; Franz and Hogue, 2011). Borga et al. (2006) suggested
that more measured data would fall into the corresponding predic-
tion uncertainty intervals. Haan et al. (1995) demonstrated that
the amount of overlap between paired simulated interval and mea-
sured interval can be a substitute indicator of model performance.
Harmel and Smith (2007) further developed this idea into a correc-
tion factor (CF) for each deviation calculation (point-to-interval),
which is based on the theory that H/WQ models should be evalu-
ated against the measurement uncertainty. However, this factor
is sometimes misleading because this factor is determined by the
deviation between the predicted data and the nearest boundary
of measurement uncertainty interval. In this sense, a larger value
of CF means that more predicted data can be found inside the
paired measured intervals at the price of increasing the length of
the measured intervals. Therefore, this may lead to greater trust
in larger uncertainties because they are more likely to overlap than
precise point-to-point deviation. This dilemma also exists in other
CFs (interval-to-interval) represented by the overlap of paired
probability distribution functions (PDF) about each simulated data
and measured value (Harmel et al., 2010).

The primary objective of the present study is to develop an
Interval-Deviation Approach (IDA) (interval to interval) to facilitate
enhanced evaluation of watershed model within an uncertainty
framework. The basis of the IDA was the theory that H/WQ models
should not be evaluated against the paired data points, which are
uncertain, but against the inherent uncertainty intervals. In this
sense, each absolute distance (at least between the nearest bound-
aries and between the farthest boundaries) should be considered
for a given uncertainty interval or probability distribution for each
measured and predicted datum. The developed IDA was subse-
quently validated with simulated and measured data collected in
the Three Gorges Reservoir Area (TGRA) in China.

2. Materials and methods

2.1. The Interval-Deviation Approach

In previous papers, the degree of uncertainty is expressed by
one or more of the followings: (1) a CI, which is derived by ordering
all potential values and later identifying the upper and lower
thresholds that act as good estimates of the unknown data sets
(Shen et al., 2012a); (2) a probable error range (PER), for which
each simulated or measured data point should be determined
and the error range (presented as ±% deviations from the data
point) is estimated from statistical analysis (Harmel et al., 2006);
and (3) a PDF, designed for each data set using statistical estima-
tion of the probability distributions, depending on the distribu-
tional properties throughout the data sets (Shen et al., 2012b).

It is evident that the traditional error term (Pi � Oi) is deter-
mined simply as the difference between predicted and measured
data points, but this error term does not account for any prediction
uncertainty and measurement uncertainty in model evaluation.
Instead, the basic idea of the IDA is that the deviation can be

calculated by each absolute distance between the paired uncer-
tainty intervals or probability distributions of each simulated value
and measured data. Modification 1 is introduced here when only
uncertainty boundary is known. Modification 2, which is applied
when the probability distribution is known or assumed for each
data, produces a more practical estimate of the deviation. In this
sense, the paired predicted and measured intervals (CI, PER or
PDF) were firstly designed mathematically as:

Pi ¼ ½P�i ; P
þ
i � ¼ fx 2 RjP�i 6 x 6 Pþi g ð1Þ

Oi ¼ ½O�i ;O
þ
i � ¼ fx 2 RjO�i 6 x 6 Oþi g ð2Þ

where all of the predicted data values, pi1, pi2, . . . ,pij, . . . ,pin, are lo-
cated in the interval ½P�i ; P

þ
i �. Similarly, all of the observed data val-

ues, oi1, oi2, . . . ,oik, . . . ,oin, are located in the interval ½O�i ;O
þ
i �. R is the

set of real numbers. The error term of each predicted and observed
pair (Pi, Oi) is given by Pi � Oi.

2.1.1. Methodology 1
Methodology 1 is applied when only the CI or PER are known or

assumed, while no PDF can be assumed. Using Methodology 1, the
calculation of deviation is related to the distances between the
nearest and farthest boundaries of the paired uncertainty intervals.
In this study, a CI or a PER is assumed to be a set of real numbers
with the property that any value that lies between the uncertainty
boundaries is also included in the set. In the first step, the error
term Pi � Oi is derived from the distance between the farthest
boundaries (dimax) and the distance between the nearest bound-
aries (dimin) of each paired intervals. As illustrated in Fig. 1, dimin

is set equal to 0 if any interval boundaries fall within the paired
intervals. Otherwise, dimax and dimin can be determined by the abso-
lute distance between the paired interval boundaries, which are
shown numerically in Eqs. (3) and (4).

dimax ¼ MaxðdðP�i ;O
�
i Þ;dðP

þ
i ;O

�
i Þ; dðP

�
i ;O

þ
i Þ;dðP

þ
i ;O

þ
i ÞÞ ð3Þ

dimin ¼ MinðdðP�;O�Þ; dðP�;OþÞ;dðPþ;O�Þ; dðPþ;OþÞÞ ð4Þ

The error term Pi � Oi is then treated as the deviation calculated
by the weighted values of dimax and dimin. The calculation of the er-
ror term is shown in Eq. (5).

Pi � Oi ¼ xi � dimax þ ð1� xiÞ � dimin ð5Þ

where weight xi is used in the case of a weighted linear combination
of the farthest and nearest absolute distances between the paired
intervals. The value of xi varies from 0 to 1, and a higher value of
xi indicates the probability of dimax increases for a given uncertainty
interval. The concept is undeniably sound, but it leaves for further
determination the extent of xi. This is considerable difficult due to
the lack of a prior distribution of the paired intervals. For this rea-
son, the weight (xi) can be set to 0.5 based on the idea that there
was equal faith in the farthest and nearest absolute distances.
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Fig. 1. Graphical representation of the Interval-Deviation Approach to calculate the
nearest and farthest distances between the paired intervals.
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