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s u m m a r y

Improving understanding of chemical transport in the subsurface commonly employs evolving ground-
water monitoring networks. The objective of this work was to apply the information theory to propose
an objective algorithm for augmenting a subsurface monitoring network (SMN) with the purpose of dis-
crimination of conceptually different subsurface flow and transport models. This method determines new
monitoring locations where the Kullback–Leibler total information gain is maximized. The latter is com-
puted based on estimates of the uncertainty in modeling results and uncertainty in observations. The
method was applied to discriminate models in (1) a synthetic case of groundwater contamination from
a point source; (2) the tracer experiment conducted at the USDA-ARS OPE3 research site where a pulse of
KCL solution was applied with irrigation water and CL� concentrations were subsequently monitored.
Models were compared that included or ignored the effect of subsurface soil lenses on chemical trans-
port. Pedotransfer functions were used to develop the ensemble of models for estimating the uncertainty
in modeling results obtained with the numerical 3D flow and transport model. Peak tracer breakthrough
concentrations were used to define the information gains. The determination of the new locations to aug-
ment existing ones was conducted on a 2-D grid. The information gain peaked in small area, and addi-
tional observation locations were very well spatially defined. Well-calibrated models provided a single
optimal location, whereas, if models were not calibrated well, the Bayesian estimates of the new obser-
vation location depended on the activation sequence assumed for existing locations. The information gain
maximization can suggest data collection locations to reduce uncertainties in the conceptual models of
subsurface flow and transport.

Published by Elsevier B.V.

1. Introduction

Significant effort has been invested in the development of tech-
niques to design effective groundwater monitoring networks
(GMN). To this end, several state-of-the art reviews and guidance
documents have been published during the past decade (Bloom-
field, 2000; Hassan, 2003; Minsker, 2003; U.S. EPA, 2005; U.S.
DOE, 2004; Kollat et al., 2011). To date, it is generally agreed that
there is no single ‘‘best’’ method to optimize a long term ground-
water monitoring network. The most significant advantage con-
ferred by any optimization approach is that they are used to
apply consistent, well-documented procedures, which incorporate

formal decision tools, to the process of evaluating and optimizing
monitoring programs (U.S. EPA, 2005).

The dynamic nature of GMN is an important factor in network
design in many groundwater monitoring programs. Network de-
sign may be an iterative process, where initial sampling programs
are often revised or updated as a result of collected data. Thus net-
work augmentation or reduction is the characteristic feature of dy-
namic GMNs (Hudak and Loaiciga, 1992). In addition, the
objectives of the monitoring network may also change with time.
As a result, the dynamic GMN design includes the iterative valida-
tion–monitoring–refinement cycle (Hassan, 2003). The purposes of
the GMN augmentation may include improvements in parameter
estimation, source identification, plume delineation, as well as
improvement and discrimination of conceptual models and their
mathematical implementations.

GMN augmentation for model discrimination was addressed
in early works by Knopman and Voss (1989), Usunoff et al.
(1992) and Nordquist and Voss (1996). Usunoff et al. (1992)
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noted that conceptual model uncertainties are often the main
source of prediction uncertainties. They emphasized that simu-
lating experiments with all available models is necessary but
not sufficient since several models can be successfully fitted to
measurements obtained from solute transport experiments. It
was shown that up to one order of magnitude differences in peak
concentrations and arrival times were found when performing
long-term predictions (Usunoff et al., 1991). Knopman and Voss
(1989) postulated that points of greatest difference in predictions
can contribute the most information to the discriminatory power
of a sampling design. They suggested that three objective func-
tions be used in the design and optimization process: (1) the
sum of squared differences in predicted vs. observed concentra-
tions; (2) squared scaled difference; and (3) minimum squared
difference. Nordquist and Voss (1996) developed an approach to
model discrimination and GMN design based on the hypothesis
that measurements in regions where alternative models produce
the most divergent predictions are best suited for deciding which
of the candidate models is the most appropriate (Knopman et al.,
1991). The regions of high sensitivity for important system
parameters can be considered as areas where measurements
may be made during field tests aiming at efficient estimation of
parameters and model discrimination. James and Gorelick
(1994) developed a Bayesian data worth framework to improve
cost-effectiveness of data collection in groundwater remediation
problem. Recently the concept of the value of information as the
context-specific metric of uncertainty has been introduced in
groundwater remediation (Liu et al., 2012).

The argument has been made that comparisons between results
in simulations with different models reflect uncertainties in both
modeling results and experimental data (Himmelblau, 1970). Gen-
erally speaking, it may be difficult to distinguish between models
where the difference between average estimated results from
two models is large and the uncertainty of each average is also
large. It may also be important to determine where the data values
are uncertain; low confidence in data may make model compari-
sons with that data inappropriate.

A fruitful approach to evaluate the usefulness of a measure-
ment for distinguishing between two hypotheses was proposed
in the seminal paper (Kullback and Leibler, 1951) in which the
information in a measurement for discrimination between two
hypotheses was first defined. The mean value of this Kullback–
Leibler information represented the information gain that could
be encountered if the true hypothesis were accepted rather than
the wrong one. This mean value eventually was termed Kullback–
Leibler divergence, information gain, relative entropy, or infor-
mation divergence, and was computed for model predictions an
estimate of the information loss when full truth is approximated
by the model (Poeter and Anderson, 2004). This measure was pro-
ven to be useful in (a) evaluation of predictive capabilities of
hydrological models when observations presented the ‘true’
distribution that was approximated by model predictions (Wejss
et al., 2010), (b) improving inverse solutions of groundwater flow
models (Szucs et al., 2006), and (c) assessment of improvement in
modeling results with data assimilation (Bulygina and Gupta,
2009). Various approximations of the Kullback–Leibler diver-
gence resulted in development of the family of model discrimina-
tion criteria, such as Akaike criterion AIC, and later AICc
(Burnham and Anderson, 2004) that were used in groundwater
modeling to rank calibrated models (Poeter and Anderson,
2005; Foglia et al., 2007; Ye et al., 2008), and in inverse ground-
water modeling for hydraulic conductivity estimation using
Bayesian model averaging (Tsai and Li, 2008). All applications of
the Kullback–Leibler divergence to model discrimination,
however, relied on the existing set of observations and did not
attempt to seek additional measurements.

Kullback (1959) showed that Kullback–Leibler information
could be also applied for the selection of a new observation
location to better discriminate between models without making
an assumption that one of models generates the ‘true’ distribution
whereas another one does not. Himmelblau (1970) implemented
this suggestion for the case of non-linear models. The objective
of this work was to apply the Kulback–Himmelblau sequential de-
sign method (KHSD) to discriminate models for the case study of
inert tracer transport in variably saturated soil and shallow ground
water. Specifically, this approach was used to determine the loca-
tion where additional observations are needed to discriminate
models in (1) a synthetic case of groundwater contamination from
a point source; (2) the tracer experiment conducted at the USDA-
ARS OPE3 research site where a pulse of KCL solution was applied
with irrigation water and tracer transport was monitored
afterwards.

2. Kullback–Himmelblau method to select new observation
location for model discrimination

Different new observation locations will provide different
additional information about model performance and different
possibilities to discriminate between models. The Kullback–Him-
melblau methodology quantifies these differences. The method is
based on the value of information in a measurement to distinguish
between two hypotheses as introduced by Kullback and Leibler
(1951). Let Y be a random variable that is distributed with a prob-
ability density p1(y) when hypothesis H1 is true (Model 1 is correct)
and distributed with a probability density p2(y) when hypothesis
H2 is true (Model 2 is correct).

The quantity

ln½p1ðyÞ=p2ðyÞ� ð1Þ

is defined as the ‘information in y for discrimination between H1

and H02 (Kullback and Leibler, 1951). This is a measure of the odds
in favor of choosing H1 over H2 or, from the information theory
viewpoint, of the information in favor of hypothesis H1 as opposed
to hypothesis H2. The expected information in favor of choosing H1

over H2, or information gain due to choosing H1 over H2 is

Ið1 : 2Þ ¼
Z 1

�1
p1ðyÞln

p1ðyÞ
p2ðyÞ

dy ð2Þ

Similarly, the expected information in favor of choosing H2 over
H1, or information gain due to choosing H2 over H1

Ið2 : 1Þ ¼
Z 1

�1
p2ðyÞln

p2ðyÞ
p1ðyÞ

dy ð3Þ

Kullback (1959) proposed that total information gain due to
selecting one model instead of another, i.e. value

Jð1;2Þ ¼ Ið1 : 2Þ þ Ið2 : 1Þ ¼
Z 1

�1
½p1ðyÞ � p2ðyÞ�ln

p1ðyÞ
p2ðyÞ

dy ð4Þ

be maximized to distinguish between two models. It means that the
new monitoring point has to be selected where the J(1,2) value for
model predictions reaches a maximum.

Explicit expression for J(1,2) can be found under normality
assumption for probability distribution function p1 and p2, i.e. for
the case when two models are considered. Assume that n observa-
tions has been made and the sought new observation location is
the location number (n + 1), and the model prediction in this point
is denoted Y(n+1). Assume that the observations in this location
(n + 1) are normally distributed about the expected value for the
model, efY ðnþ1Þ

r g ¼ yðnþ1Þ
r , r = 1,2, with a variance of r2

Y Furthermore,
yðnþ1Þ

r is distributed in a local (linearized) region about a
predicted value, Y ðnþ1Þ

r , with a variance of r2
r . Consequently, Y(n+1)
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