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s u m m a r y

Modeling and partitioning ecosystem evapotranspiration (ET) are important in predicting the responses
of ecosystem water cycles to global climate change and land use. By incorporating the Ball–Berry stoma-
tal conductance model and a light use efficiency-based gross primary productivity (GPP) model into the
Shuttleworth–Wallace model, we developed a new model, SWH, for estimating ET with meteorological
data and remote sensing products. Since the new model solved the problem of estimating canopy stoma-
tal conductance, it can be used at sites equipped with meteorological observation systems around the
world. Compared with eddy covariance measurements, the SWH model demonstrated satisfactory esti-
mates of ET at a temperate forest and an alpine grassland. Eight meteorological variables and two remote
sensing products (i.e., leaf area index, LAI, and enhanced vegetation index, EVI or normalized difference
vegetation index, NDVI, or fraction of photosynthetically active radiation, FPAR) are required in our
model. This will facilitate estimates of ET and its components, and further elucidate the mechanisms
underlying their variations at regional scale. In addition, our model estimates ET and GPP simultaneously,
making it convenient to address the coupling of these two key fluxes in terrestrial ecosystems.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Evapotranspiration (ET) is an important process for ecosystem
water cycles and energy balance, and is closely linked to ecosystem
productivity (Jung et al., 2010; Oki and Kanae, 2006). It is therefore
important to provide spatiotemporal information of ET across di-
verse ecosystems in order to predict the responses of ecosystem
carbon and water cycles to changes in global climate and land
use (Jung et al., 2010). Modeling of ET has a history of several dec-
ades (Li et al., 2009; Monteith, 1965; Shuttleworth and Wallace,
1985). Some process-based models have been developed or im-
proved to estimate ET at diverse spatiotemporal scales (Bastiaans-
sen et al., 2005; Hu et al., 2009; Kustas and Anderson, 2009;
Monteith, 1965; Overgaard et al., 2006; Shuttleworth and Wallace,
1985; Vinukollu et al., 2011). Among these models, the Penman–
Monteith model (P–M model, Monteith, 1965;) and the Shuttle-
worth–Wallace model (S–W model, Shuttleworth and Wallace,
1985) are mostly used (Anadranistakis et al., 2000; Hu et al.,
2009; Iritz et al., 1999; Kato et al., 2004; Stannard, 1993; Tourula
and Heikinheimo, 1998).

The S–W model is a two-source model developed from P–M to
estimate plant transpiration and soil water evaporation separately.
Studies indicate that the performance of S–W model is better than
other ET models (including P–M model) at diverse ecosystems
(Stannard, 1993; Zhang et al., 2008). However, one factor hindering
the application of the S–W model is the estimation of canopy sto-
matal resistance. Canopy stomatal resistance is critical in modeling
ET but usually regarded as a constant due to the difficulty in
measurements or calculation. In our previous work, we used the
Ball–Berry model (Ball et al., 1987) to estimate canopy stomatal
resistance in S–W, which yielded good agreement between the
ET prediction and observations at four grassland ecosystems (Hu
et al., 2009). The Ball–Berry model incorporates the correlation be-
tween photosynthesis and stomatal conductance, air humidity, and
ambient CO2 concentrations based on observations and Cowan’s
theory of ‘‘maximum carbon gain and minimizing water loss’’
(Cowan and Farquhar, 1977). This model captures the essence of
the coupling between photosynthesis and transpiration, and it
implicitly covers the effects of diverse environmental factors on
stomatal conductance (Leuning, 1995). Therefore it illustrates a
strong predictive power and has been widely used to estimate sto-
matal conductance in physiological models (Leuning, 1995; Tuzet
et al., 2003). In the Ball–Berry model, however, an important
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variable, photosynthetic rate (Pn), needs to be provided to estimate
stomatal conductance. The gross primary productivity (GPP) calcu-
lated from eddy covariance measurement was used to replace Pn

and illustrated satisfactory performance in our previous work.
Therefore, as a substitute of Pn, GPP is needed in the combined
S–W model and Ball–Berry model.

Eddy covariance measurements of GPP are only available at a
limited number of sites. Fortunately, light use efficiency (LUE)-
based GPP models have been developed and have yielded good
predictions at individual sites to global scales. Example LUE-based
models include CASA (Potter et al., 1993), GLO-PEM (Prince and
Goward, 1995), VPM (Xiao et al., 2004), and EC-LUE (Yuan et al.,
2007). NASA has also released a global GPP product, i.e., the MODIS
(Moderate resolution Imaging Spectroradiometer) GPP product,
which was calculated with a similar approach (Zhao et al., 2005).
In terms of application, the LUE-based GPP model needs a few cli-
mate variables and remote sensing products, which are readily
available globally.

In this study, our objective is to develop a new ET model
through combining the S–W model, Ball–Berry model, and a LUE-
based GPP model to estimate and partition ET with meteorological
variables and remote sensing products. We will test the perfor-
mance of the new model with in site measurements at a forest site
and a grassland site. The main orientation of this work is that there
are a large number of meteorological stations across the world, at
which the meteorological variables are continuously measured. By
using this rich dataset with the approach of this study, it would be
possible to address the spatiotemporal variations in ET at diverse
ecosystems in the world. Our work in this study might be a helpful
beginning for this endeavor.

2. Materials and methods

2.1. Modeling

The S–W model describes the water vapor flows from soil to the
atmosphere as being analogous to the flows of electric currents. It
estimates the latent heat flux from the soil surface (i.e., soil water
evaporation) and from the plant (i.e., plant transpiration) as two
separate sources. Details of the model are available in Shuttleworth
and Wallace (1985) and Hu et al. (2009).

Soil surface resistance rss and canopy stomatal resistance, rac,
(i.e., the reverse of canopy stomatal conductance) are two critical
input variables in the S–W model. In this study, rss was estimated
as the function of soil water content (Lin and Sun, 1983):

rss ¼ b1
SWs

SW

� �b2

þ b3 ð1Þ

where SW and SWs are the soil water content and saturated water
content in the surface soil (m3 m�3), and b1 (s m�1), b2, b3 (s m�1)
are empirical constants with b1 fixed as 3.5 s m�1 (Lin and Sun,
1983).

We estimated rac by introducing the Ball–Berry model in our
study (Ball et al., 1987):

rsc ¼
1

g0 þ a1Pnhs=CS
ð2Þ

where g0, a1 are empirical parameters, Pn (lmol m2 s�1) is photo-
synthetic rate, hs is leaf surface relative humidity, and CS is leaf sur-
face CO2 content (fixed as 390 ppm).

Pn is a key driving variable to estimate rsc. We used the gross
primary productivity (GPP) estimated from the measurements of
eddy covariance systems in our previous work (Hu et al., 2009).
For the purpose of applications at the sites without GPP measure-
ments, we estimated GPP with a satellite-based light use efficiency

model, whose scheme was similar to the GLO-PEM model (Prentice
and Goward, 1995):

GPP ¼ e� PAR � FPAR ð3Þ

where PAR is the incident photosynthetically active radiation
(lmol m�2 s�1), FPAR is the fraction of PAR being absorbed by the
canopy. There are four methods being widely used to estimate
FPAR: (1) estimated as the function of LAI and light extinction coef-
ficient with Beer’s law; (2) estimated as the function of NDVI
(FPAR = 1.24NDVI � 0.168, Sims et al., 2006), or (3) Enhance
Vegetation Index, EVI (FPAR = 1.2EVI, Fisher et al., 2008); and (4)
the Moderate resolution Imaging Spectroradiometer (MODIS) FPAR
product. In this study, we compared the performance of the four
methods on estimating GPP and ET. e is the light use efficiency
(lmol CO2 lmol�1 PPFD), and is down-regulated by air tempera-
ture, soil water moisture, and vapor pressure deficit (VPD):

e ¼ e0 � f ðTÞ � f ðSWÞ � ðVPDÞ ð4Þ

f ðTÞ ¼ ðT � TminÞðT � TmaxÞ
ðT � TminÞðT � TmaxÞ � ðT � ToptÞ2

ð5Þ

f ðSWÞ ¼ SW� Qw

Q f � Q w
ð6Þ

f ðVPDÞ ¼ VPDmax � VPD
VPDmax

ð7Þ

where e0 is the apparent quantum yield or maximum light use effi-
ciency, and f(T), f(W) and f(VPD) are the downward-regulation sca-
lars for the effects of temperature, soil moisture and VPD on light
use efficiency of vegetation, respectively. Tmin, Tmax and Topt are
minimum, maximum and optimum air temperature (�C) for photo-
synthetic activity, respectively. If air temperature falls below Tmin or
increases beyond Tmax, f(T) is set to zero. In this study, Tmin, Topt and
Tmax are set to 0, 20 and 40 �C, respectively (Xiao et al., 2004). Qw

and Qf are the soil water content at wilting point and field capacity,
which were set to the observed maximum and minimum volumet-
ric water content during the study period. If soil moisture increases
beyond 0.35 m3 m�3, f(W) was set to one, and if VPD falls below
0.5 kPa, f(VPD) was also set to one (Zhao et al., 2005).

For the new S–W model, which was incorporated with the Ball–
Berry stomatal conductance model and the LUE-based GPP model,
referred to as the SWH model hereafter, the input driving variables
are Ta, RH, D, SW, Rn, G, PAR, WS, LAI, NDVI (or EVI, or FPAR),
respectively. The parameters need to be optimized or estimated
are b2, b3, a, g0, k, and e0, respectively. The model time step was
set as 16-day as the satellite products were calculated as 16-day
composites. MODIS products, i.e., LAI/FPAR (MOD15A2) and
NDVI/EVI (MOD13Q1) are the satellite products acquired from
the website of Oak Ridge National Laboratory Distributed Active
Archive Center (ORNL DAAC, 1 km, http://daac.ornl.gov). These
MODIS products contain some cloud-contaminated or missing data
(Hill et al., 2006). Therefore, before being input to the model, these
products were processed with a software package TIMESAT3.0
(asymmetric Gaussian method was used) to exclude the noises
and fill the gaps (Jönsson and Eklundh, 2004).

2.2. Parameterization and measurements of meteorological variables

The six parametersb2, b3, a, g0, k, and e0 were estimated through
Monte Carlo simulations (details are described in Hu et al., 2009).
Briefly, we performed 10,000 Monte Carlo simulations to select ten
top-performance parameter sets, and the mean of the ten top-per-
formance parameter sets was regarded as the best-fit parameter
set. Using the data for calibration, we calculated the ratio of the
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