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s u m m a r y

Groundwater flow models are usually characterized as being either transient flow models or steady state
flow models. Given that steady state groundwater flow conditions arise as a long time asymptotic limit of
a particular transient response, it is natural for us to seek a finite estimate of the amount of time required
for a particular transient flow problem to effectively reach steady state. Here, we introduce the concept of
mean action time (MAT) to address a fundamental question: how long does it take for a groundwater
recharge process or discharge processes to effectively reach steady state? This concept relies on identify-
ing a cumulative distribution function, F(t;x), which varies from F(0;x) = 0 to F(t;x) ? 1� as t ?1,
thereby providing us with a measurement of the progress of the system towards steady state. The
MAT corresponds to the mean of the associated probability density function f(t;x) = dF/dt, and we dem-
onstrate that this framework provides useful analytical insight by explicitly showing how the MAT
depends on the parameters in the model and the geometry of the problem. Additional theoretical results
relating to the variance of f(t;x), known as the variance of action time (VAT), are also presented. To test our
theoretical predictions we include measurements from a laboratory-scale experiment describing flow
through a homogeneous porous medium. The laboratory data confirms that the theoretical MAT predic-
tions are in good agreement with measurements from the physical model.

� 2013 The Authors. Published by Elsevier B.V.

1. Introduction

Groundwater flow systems, and the corresponding models
used to study these systems, are typically characterized as being
either transient or steady state (Remson et al., 1971; Bear, 1972;
Clement et al., 1994; Haitjema, 1995; Strack, 1989; Wang and
Anderson, 1982; Zheng and Bennett, 2002). This characterization
is useful since the mathematical and computational techniques
required to solve steady state groundwater flow models are gen-
erally much simpler than those required to solve transient
groundwater flow models. Given that steady flow conditions
correspond to the long time asymptotic limit of a transient re-
sponse (Wang and Anderson, 1982, pp. 76–77; Haitjema, 1995,
pp. 158–159) it is relevant to develop tools that can be used to

estimate the amount of time required for a particular transient
flow problem to effectively reach steady state. In the heat and
mass transfer literature such a time is called a critical time
(Hickson et al., 2009a,b, 2011).

A schematic diagram of a groundwater recharge problem is
outlined in Fig. 1(a) for an aquifer of length L. The aquifer is
bounded by two rivers. River one, at x = 0, at river stage h1, and
river two, at x = L, at river stage h2. The hypothetical phreatic
surface without recharge is indicated by the curve marked t = 0.
We consider initiating a transient response in the groundwater
flow system by applying spatially uniform recharge at rate R.
The result of applying this recharge is that the amount of water
stored in the aquifer increases with time as the phreatic surface
rises to reach the curve indicated by t ?1. This kind of scenario,
where recharge is applied to an existing unconfined groundwater
flow system, leads to an increase in the saturated depth corre-
sponding to an increase in the amount of water stored in the
aquifer. The details of how to design and operate such recharge
systems have been described at length previously (Bouwer,
2002; Daher et al., 2011; Martín-Rosales et al., 2007; Pedretti
et al., 2012; Vandenbohede and Van Houtte, 2012). The design
of such recharge systems naturally leads to the following
questions:
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(1) How long does it take for the volume of water stored in the
aquifer to reach a maximum? (i.e. what is the critical time
for this process?)

(2) How does this critical time depend on the parameters gov-
erning the flow processes and the geometry of the aquifer?

Strictly speaking, from a mathematical point of view, it takes an
infinite amount of time for a transient response of a diffusive pro-
cess to become steady (McNabb and Wake, 1991; McNabb, 1993).
Clearly, this strict mathematical definition is impractical and it
would be useful to have a quantitative framework to estimate a fi-
nite timescale that indicates when the time rate of change of water
stored in the aquifer to effectively reach zero (Sophocleus, 2012;
Walton, 2011). Developing a method of analysis that avoids the
need for relying on numerical computation to answer these ques-
tions would be useful since it is not obvious how, for example,
changing the properties of the porous medium or the geometry
of the groundwater flow system would affect the time taken for
the rate of change of water stored in the aquifer to effectively reach
zero. Understanding this timescale may have several practical
uses; for example, if we were to design an artificial recharge pro-
gram it would be of interest to monitor the increase in storage in
the aquifer with time and to have a criteria to indicate when the
system would effectively reach steady state.

Previous attempts to characterize critical times for groundwater
flow models have relied on using numerical experimentation (Buès
and Oltean, 2000; Chang et al., 2011), laboratory-scale experimen-
tation (Kim and Ann, 2001; Goswami and Clement, 2007; Chang

and Clement, 2012; Simpson et al., 2003) or very simple mathe-
matical definitions. One common mathematical approach is to de-
fine the critical time to be the amount of time taken for the
transient solution to reach within �% of the corresponding steady
state value, where � is some small user-defined tolerance (Hickson
et al., 2011; Landman and McGuinness, 2000; Lu and Werner,
2013; Watson et al., 2010). Although insightful, there are certain
difficulties associated with this definition, namely:

(1) this definition depends upon a subjective choice of �,
(2) this definition requires the complete solution of the the tran-

sient groundwater flow problem, and
(3) this definition leads to a numerical framework that does not

provide analytical insight into how the critical time varies
with the parameters in the model.

In this work we introduce the concept of mean action time
(MAT) which gives us a finite estimate of the amount of time re-
quired for a transient groundwater flow resposne to effectively
reach steady state. The MAT was originally defined by McNabb
and Wake as a tool to study linear heat transfer (McNabb and
Wake, 1991; McNabb, 1993). Here we demonstrate how to extend
this theory to analyze groundwater flow processes. We will show,
in a general framework, that:

(1) the MAT gives us an objective finite estimate of the amount
of time required for a transient response to effectively reach
steady state,
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Fig. 1. (a) Schematic of an aquifer recharge process. The groundwater flow takes place on a one-dimensional domain, 0 6 x 6 L, and is assumed to correspond to a linearized,
unconfined, Dupuit–Forchheimer description (Bear, 1972). The saturated depth at x = 0 (river 1) is h(0, t) = h1. The saturated depth at x = L (river 2) is h(L, t) = h2. The schematic
depicts a transition where the initial phreatic surface, indicated by t = 0, asymptotes to a new steady state, indicated by t ?1. This transition is associated with the
application of uniform recharge, at rate R, for t > 0. (b) Schematic showing how the saturated thickness at a fixed location, x = x1, in Fig. 1(a) varies with time, t. This schematic
corresponds to a recharge transition since h(x, t) increases with t. (c) For the schematic transition in (b) we show F(t;x1), which has the property that F(0;x1) = 0 and
F(t;x1) ? 1� as t ?1. (d) For the schematic transition in (b) we plot f(t;x1), using Eq. (4). The mean of this probability density function is indicated in the red vertical (dotted)
line, and corresponds to the MAT, T(x1). The variance of this probability density function is indicated with the gray shading, which corresponds to one standard deviation
about the mean Tðx1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffi
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, as indicated. Profiles in (e) show T(x) (solid) and TðxÞ þ
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(dashed) at all locations 0 6 x 6 L. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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