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s u m m a r y

Unlike single-site precipitation generators, multi-site precipitation generators make it possible to repro-
duce the space–time variation of precipitation at several sites. The extension of single-site approaches to
multiple sites is a challenging task, and has led to a large variety of different model philosophies for
multi-site models. This paper presents an alternative semi-parametric multi-site model for daily precip-
itation that is straightforward and easy to implement. Multi-site precipitation occurrences are simulated
with a univariate Markov process, removing the need for individual Markov models at each site. Precip-
itation amounts are generated by first resampling observed values, followed by sampling synthetic pre-
cipitation amounts from parametric distribution functions. These synthetic precipitation amounts are
subsequently reshuffled according to the ranks of the resampled observations in order to maintain impor-
tant statistical properties of the observation network. The proposed method successfully combines the
advantages of non-parametric bootstrapping and parametric modeling techniques. It is applied to two
small rain gauge networks in France (Ubaye catchment) and Austria/Germany (Salzach catchment) and
is shown to well reproduce the observations. Limitations of the model relate to the bias of the reproduced
seasonal standard deviation of precipitation and the underestimation of maximum dry spells. While the
lag-1 autocorrelation is well reproduced for precipitation occurrences, it tends to be underestimated for
precipitation amounts. The model can generate daily precipitation amounts exceeding the ones in the
observations, which can be crucial for risk management related applications. Moreover, the model deals
particularly well with the spatial variability of precipitation. Despite its straightforwardness, the new
concept makes a good alternative for risk management related studies concerned with producing daily
synthetic multi-site precipitation time series.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Stochastic precipitation generators are tools to produce syn-
thetic time series of precipitation of any length, maintaining the
statistics of the observations. They are typically applied when long
data series are required but the observations available are too
short. Such tools have been applied in engineering design, agricul-
tural, ecosystem as well as hydrological impact studies (Wilks and
Wilby, 1999).

The generation of daily precipitation at single sites typically
involves two components: the binary precipitation occurrence
(precipitation or no precipitation) and the precipitation amount
on wet days. Precipitation occurrences are modeled with a Markov
chain and precipitation amounts with a parametric distribution

(e.g., Katz, 1977; Richardson, 1981), usually ignoring serial correla-
tion. This type of parametric model is often referred to as ‘Richard-
son type model’. Frequently used parametric distributions include
the exponential, mixed exponential, lognormal, gamma, general-
ized Pareto or Weibull distribution. WGEN (Richardson and
Wright, 1984) is a widely applied model applying this two-stage
approach. Non-parametric approaches are based on resampling
methods such as bootstrapping techniques (e.g., Brandsma and
Buishand, 1997a). The idea behind such models is that synthetic
time series with the same statistical properties as the observations
can be generated by taking samples from the observations (Haber-
landt et al., 2011). Semi-parametric approaches combine paramet-
ric as well as non-parametric methods. LARS-WG (Semenov et al.,
1998) for instance generates dry and wet spells as well as precip-
itation amounts from semi-empirical distributions. Different mod-
els have been proposed for single sites (e.g., Brandsma and
Buishand, 1997a; Hayhoe, 2000; Katz, 1977; McKague et al.,
2005; Richardson and Wright, 1984; Richardson, 1981; Sharma
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and Lall, 1999; Stowasser, 2011; Wan et al., 2005; Zheng and Katz,
2008).

Unlike single-site models, multi-site models have to reproduce
the space–time variation of precipitation at several sites. The
extension of single-site approaches to multiple sites is a challeng-
ing task, and has resulted in many different model philosophies for
multi-site models. Non-parametric methods include k-nearest
neighbor (kNN) algorithms (Apipattanavis et al., 2007; Beersma
and Buishand, 2003; Leander and Buishand, 2009), resampling of
weather types (Wilby et al., 2003), reshuffling algorithms (Clark
et al., 2004) or Neyman–Scott rectangular pulses processes (Burton
et al., 2008). Semi-parametric approaches have been proposed by
Brandsma and Buishand (1997b), Palutikof et al. (2002), Fowler
et al. (2005), Apipattanavis et al. (2007), Kilsby et al. (2007), Can-
non (2008) or Leander and Buishand (2009). They all apply various
methods including the resimulation of atmospheric circulations
(Brandsma and Buishand, 1997b), the combination of Markov pro-
cesses and the resimulation of weather types (Palutikof et al.,
2002), Markov processes and Neyman–Scott rectangular pulses
(Fowler et al., 2005; Kilsby et al., 2007), the combination of Markov
processes and kNN algorithms (Apipattanavis et al., 2007), Ber-
noulli–Gamma density networks (Cannon, 2008) or kNN algorithm
with perturbation of the highest resampled values (Leander and
Buishand, 2009). Parametric approaches have been introduced by
Wilks (1998), Hughes et al. (1999), Brissette et al. (2007), Ailliot
et al. (2009), Bardossy and Pegram (2009), Khalili et al. (2009), Ser-
inaldi (2009b), Srikanthan and Pegram (2009) or Baigorria and
Jones (2010). Amongst these, often cited is the work by Wilks
(1998), who uses Markov chains at several sites driven by a corre-
lated random field. While this model is able to reproduce many
important statistical properties of the multi-site precipitation re-
cords, it does not effectively deal with the spatial variability of
the generated precipitation fields. This problem is referred to as
the ‘spatial intermittence problem’, a term first used by Bardossy
and Plate (1992). The Wilks (1998) approach was further adapted
by Brissette et al. (2007), Khalili et al. (2009) and Srikanthan and
Pegram (2009). Copula-based methods are suggested by Bardossy
and Pegram (2009) and Serinaldi (2009b) whereas Baigorria and
Jones (2010) propose an orthogonal Markov chain to simulate mul-
ti-site precipitation occurrences. Hidden Markov models are ap-
plied by Hughes et al. (1999) and Ailliot et al. (2009).
Comprehensive literature reviews of multi-site models are pro-
vided by Srikanthan and McMahon (2001), Serinaldi (2009b) or
Baigorria and Jones (2010).

The choice of a model often relies on practical aspects including
the quantity and quality of available data and the straightforward-
ness of a model (Serinaldi, 2009b). The latter was of particular
importance in this research. We therefore propose an alternative
multi-site generator for daily precipitation and risk management
related applications. Thanks to its semi-parametric nature, the pro-
posed model allows generating daily precipitation amounts larger
than the ones in the observations. In risk management, non-ob-
served extremes are of particular interest, as extreme precipitation
events can trigger floods or mass-movements. To model multi-site
precipitation occurrence, a univariate discrete Markov process is
fitted to the time series of catchment-wide occurrence vectors. Pre-
cipitation amounts are simulated by first resampling observations,
followed by sampling from parametric distribution functions. Fol-
lowing an idea by Clark et al. (2004), the precipitation amounts
from the parametric distributions are subsequently reshuffled
according to the ranks of resampled observations in order to main-
tain important statistical properties of the observation network.
The design of the model allows sampling with correlated random
numbers having the same correlation structure as the observa-
tions, thereby considerably simplifying the implementation of
the algorithm. To model precipitation occurrence, the algorithms

by Wilks (1998) and Brissette et al. (2007) for example require ran-
dom numbers with stronger correlation compared to the observed
ones.

The paper is structured as follows: first, the proposed model is
explained in detail. Second, all steps of the model setup and eval-
uation are described. Third, we apply the model to two small rain
gauge networks in France and Austria/Germany and discuss the re-
sults. The paper ends with a conclusion and some remarks.

2. Proposed multi-site precipitation generator

The proposed model arises by merging a Markov process (e.g.,
Ailliot et al., 2009; Apipattanavis et al., 2007; Brissette et al.,
2007; Hughes et al., 1999; Khalili et al., 2009; McKague et al.,
2005; Richardson and Wright, 1984; Richardson, 1981; Stowasser,
2011; Wilks, 1998) and a reshuffling algorithm (Clark et al., 2004;
Mehrotra and Sharma, 2009) into a new promising framework.

2.1. Univariate Markov process for multi-site precipitation occurrences

The focus in the generation of precipitation occurrence is
shifted from a single-site perspective towards a catchment-wide
perspective. The concept of separate Markov chains at single sites
as for example suggested by Wilks (1998), Brissette et al. (2007) or
Khalili et al. (2009) is abandoned in favor of a univariate discrete
Markov process. Similar attempts have been made by Hughes
et al. (1999) who related a set of atmospheric variables to precip-
itation occurrence at multiple locations via a finite number of hid-
den or unobserved weather states (Mehrotra et al., 2006). More
recently, a similar concept was suggested by Ailliot et al. (2009)
who used a regional weather type model to simulate the temporal
dependence combined with censored, power transformed Gauss-
ian distributions, to model the spatial dependence of precipitation
occurrence and amounts.

In this research, a comparatively straightforward approach is
pursued without taking into account atmospheric processes. We
treat catchment-wide occurrence vectors on any day as single
catchment-wide events. The occurrence vector is the equivalent
of the precipitation field defined by the observation network. For
example, in a hypothetical three-station observation network, the
occurrence vector on any given day can vary between (1,1,1) if
there is precipitation at all stations at once and (0,0,0) if all sta-
tions are dry. It is straightforward to fit a single discrete Markov
chain to this time series of occurrence vectors.

A Markov chain represents a stochastic process that describes
time series of discrete random variables and can be characterized
by two main properties, the ‘state’ and the ‘order’. The ‘state’ de-
fines the number of values the variable can take on. The order of
a Markov chain defines the number of previous values to deter-
mine the probabilities of transitioning from one state to another.
These probabilities are often referred to as ‘transition probabili-
ties’. The transition probabilities are defined in a transition matrix,
where each row lists the probabilities of transitioning from a given
state represented by that row, to each of the various possible
states. An mth order Markov chain where the transition probabili-
ties depend on the previous m days is defined by

PRfXtþ1jXt ;Xt�1;Xt�2; . . . ; X1g ¼ PRfXtþ1jXt ;Xt�1; . . . ; Xtþmg ð1Þ

Likelihood measures such as the Akaike information criterion
AIC (Katz, 1981) or the Bayesian information criteria BIC (Schwarz,
1978) can help to determine the most appropriate order for a Mar-
kov chain. In the simplest case at single sites, modeling the occur-
rence of precipitation can be achieved with a two-state first-order
Markov chain for binary states of 0’s and 1’s indicating dry (0) and
wet (1) days (e.g., Katz, 1977; Richardson, 1981; Stern and Coe,
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