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s u m m a r y

Estimating pan evaporation is very important for monitoring, survey and management of water
resources. This study proposes the application evolutionary neural networks (ENN) for modeling monthly
pan evaporations. Solar radiation, air temperature, relative humidity, wind speed and pan evaporation
data from two stations, Antalya and Mersin, in Mediterranean Region of Turkey are used in the study.
In the first part of the study, ENN models are compared with those of the fuzzy genetic (FG), neuro-fuzzy
(ANFIS), artificial neural networks (ANN) and Stephens–Stewart (SS) methods in estimating pan evapo-
rations of Antalya and Mersin stations, separately. Comparison results indicate that the ENN models gen-
erally perform better than the FG, ANFIS, ANN and SS models. In the second part of the study, models are
compared with each other in estimating Mersin’s pan evaporations using input data of both stations.
Results reveal that the ENN models performed better than the FG, ANFIS and ANN models. It was con-
cluded that monthly pan evaporations can be successfully estimated by the ENN method. The perfor-
mance of the ENN model with full weather data as inputs presents 0.749 and 0.759 mm of mean
absolute error for the Antalya and Mersin stations, respectively.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Evaporation, as a major component of the hydrologic cycle, has
a vital importance in water resources development and manage-
ment. Accurate estimation of pan evaporation is a crucial issue
for monitoring, survey and management of water resources. Esti-
mation of evaporation loss is imperative in the planning and man-
agement of irrigation practices in many areas where water
resources are rare (Brutsaert, 1982; Jackson, 1985).

Engineers and researchers use loss from evaporation pans by
multiplying by a pan coefficient, as an estimate of the evaporation
loss from reservoirs. U.S. Weather Bureau Class A pan that is 4 ft in
diameter and 10 in. deep and is assembled on a timber grill about
6 in. above the soil surface is the most commonly used pan. Pan
evaporation is widely used as an index for evapotranspiration
and for estimating evaporation from lake and reservoirs (Frevert
et al., 1983; Irmak et al., 2002).

In the last decades, soft computing techniques (e.g., artificial
neural networks, fuzzy and neuro-fuzzy systems) have been suc-
cessfully used in modeling pan evaporation (Dogan et al., 2010; Ke-
skin and Terzi, 2006; Kim et al., 2012, 2013; Kim and Kim, 2008;
Kisi, 2005, 2006, 2009a,b,c; Kisi et al., 2012; Kisi and Tombul,
2013; Moghaddamnia et al., 2009; Nourani and Fard, 2012; Piri
et al., 2009; Sanikhani et al., 2012; Shiri and Kisi, 2011; Sudheer
et al., 2002; Tabari et al., 2010; Tan et al., 2007). Dogan et al.

(2010) examined the accuracy of neuro-fuzzy (ANFIS) method for
modeling of PE from the reservoir of Yuvacik dam in Turkey. Sudh-
eer et al. (2002) used artificial neural networks (ANNs) to estimate
pan evaporation (PE) and found that the ANN compares favorably
to conventional approach. Keskin et al. (2004) used fuzzy models
for estimating daily PE of western Turkey. Kisi (2006) investigated
the accuracy of ANFISs technique in modeling daily pan evapora-
tions. He found that the ANFIS computing technique could be suc-
cessfully used in modeling evaporation process from the available
climatic data. Keskin and Terzi (2006) developed ANN models for
estimating daily PE and found that the ANN model performed bet-
ter than the conventional method. Tan et al. (2007) estimated
hourly and daily open-water evaporation rates using ANN tech-
nique. Moghaddamnia et al. (2009) examined the accuracy of
ANN and ANFIS techniques in estimating PE in a hot and dry cli-
mate in Iran and compared them with the empirical methods. They
found that the ANN and ANFIS techniques have much better per-
formances than the empirical equations. Nourani and Fard (2012)
investigated the sensitivity analysis of the ANN outputs in simula-
tion of the PE at different climatologic regimes. Piri et al. (2009)
modeled daily PE in hot and dry climate by ANN models. Kim
et al. (2013) investigated different data-driven methods (e.g. ANN
and ANFIS) in estimating daily PE in South Korea using different
lag-time patterns. Kim and Kim (2008) applied ANN and genetic
algorithm approach for non-linear modeling of PE and alfalfa refer-
ence evapotranspiration in Korea. Kisi (2009a) modeled daily PE
using three different neural network techniques. Tabari et al.
(2010) compared ANN and multivariate non-linear regression
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(MNLR) technique for modeling daily PE and found that the ANN
performed better than the MNLR. Shiri and Kisi (2011) used ANN
and ANFIS techniques for modeling daily PE by using available
and estimated climatic data. Kisi and Tombul (2013) recently suc-
cessfully applied fuzzy genetic approach for modeling monthly PE
of Turkey. To the knowledge of the author, no study has been car-
ried out to indicate the input–output mapping ability of evolution-
ary neural networks in pan evaporation modeling. This provided an
impetus for the current investigation.

The accuracy of evolutionary neural networks (ENNs) for esti-
mating pan evaporation using climatic variables is investigated in
this study. The performance of the ENNs models are compared
with those of the fuzzy genetic, neuro-fuzzy, ANN and Stephens–
Stewart (SS) models employed in Kisi and Tombul (2013). This is
the first study to compare the accuracy of the ENNs models with
those of the FG models in the hydrological context.

2. Methodology

2.1. Artificial neural network

The artificial neural network (ANN) consists of one or more hid-
den layers and able to perform non-linear mapping between input
patterns and target values. A three layered ANN structure is illus-
trated in Fig. 1. ANN is a massively parallel system and its network
is composed of layers of parallel processing units called neurons,
with each layer being fully connected to the proceeding layer by
interconnection strengths or weights. During a training process
(at each iteration), the initial assigned weight values are progres-
sively corrected and the predicted outputs are compared with
known outputs, and the errors are back-propagated to determine
the appropriate weight adjustments which are necessary to mini-
mize errors. The detailed theoretical explanation for the ANN and
their applications within hydrology and water resources, have
been thoroughly covered in a number of publications (e.g. Haykin,
2009; Maier and Dandy, 2000).

Some of the reasons that the ANNs have become an attractive
computational tool are (ASCE, 2000): (a) They can recognize the
relation between the input and output parameters without explicit
physical consideration, (b) They are able to work well even when
the training sets contain noise and/or measurement errors, (c) They
can adapt to solutions over time to retrieve changing circum-
stances, (d) They have other inherent information-processing char-
acteristics and once trained they are easy to use.

In the present study differential evolution algorithm was used
for adjusting the weights of the ANN model. Detailed information
about the differential evolution algorithm is given in the next
section.

2.2. Differential evolution

Differential evolution (DE) is classified as a floating-point evolu-
tionary optimization algorithm (Storn and Price, 1995, 1997;
Lampinen, 2001).

Generally, the function to be optimized, f, is of the form

f ðVÞ : RD ! R ð1Þ

where R refers to real numbers, and D is the number of parameters
of the objective function, f(V). The aim is to minimize the objective
function f(V) by optimizing its parameters’ values

V ¼ ðv1; . . . ; vDÞ;V 2 RD ð2Þ

where V is a vector consisted of D objective function parameters. In
this study, the objective function f(V) denotes the mean square error
between the calculated and estimated PE values and vi is the
weights of the ANN (parameters). The parameters of the objective
function respectively are subject to lower and upper boundary con-
straints, v ðLÞi and v ðUÞi

v ðLÞi 6 v i 6 v ðUÞi i ¼ 1; . . . ;D ð3Þ

As with all evolutionary optimization algorithms, differential
evolution operates on a population, PG, of candidate solutions,
not just a single solution. The individuals of the population are
composed of these candidate solutions. Differential evolution par-
ticularly maintains a population, and G is the generation to which
the population belongs.

PG ¼ ðV1;G; . . . . . . ;VNP;GÞ G ¼ 0; . . . ;Gmax ð4Þ

Each vector contains D real parameters (chromosomes of
individuals):

Vi;G ¼ ðv1;i;G; . . . vD;i;GÞ i ¼ 1; . . . ;NP G ¼ 0; . . . Gmax ð5Þ

In order to set up a starting point for optimum seeking, the pop-
ulation must be initialized. In general, there is no knowledge avail-
able about the location of a global optimum other than the limits of
the problem variables. A natural way to seed the initial population,
PG=0, is with random values selected from within the given
limitations

Vj;i;0 ¼ randj½0;1�ðv ðUÞj � v ðLÞj Þ þ v ðLÞj i ¼ 1; . . . NP; j ¼ 1; . . . ;D

ð6Þ

where randj[0,1] refers a uniformly distributed random value with-
in the range: [0.0,1.0] that is chosen for each new j.

Population reproduction scheme of the DE differs from
other evolutionary algorithms. From the 1st generation onward,
current population vectors, PG, are randomly sampled and
combined to create candidate vectors for the next generation,

Fig. 1. A three-layer ANN architecture.
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