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s u m m a r y

Hydrologic data sets such as precipitation records typically feature complex geometries that are difficult
to represent as a whole using classical stochastic methods. In recent years, we have developed variants of
a deterministic procedure, the fractal–multifractal (FM) method, whose patterns share not only key sta-
tistical properties of natural records but also the fine details and textures present on individual data sets.
This work presents our latest efforts at encoding a celebrated rainfall data set from Boston and shows
how a modified particle swarm optimization (PSO) procedure yields compelling solutions to the inverse
problem for such a set. As our FM fits differ from the actual data set by less than 2% in maximum cumu-
lative deviations and yield compression ratios ranging from 76:1 to 228:1, our models can be considered,
for all practical purposes, faithful and parsimonious deterministic representations of the storm.

� 2013 Published by Elsevier B.V.

1. Introduction

Modeling of rainfall complexity has witnessed substantial pro-
gress in the past few decades, largely owing to the development
of sophisticated mathematical techniques, such as those based on
stochastic theories and fractal geometry. Although these ideas
have resulted in a new language for the description and simulation
of some of the data sets’ intricacies, oftentimes these notions are
still inadequate to study, on an individual basis, the incredible vari-
ety of natural rainfall patterns available to us.

Given that rainfall sets are typically erratic, noisy, intermittent,
complex, or in short, ‘‘seemingly random,’’ it has become natural to
model them using stochastic (fractal) theories (e.g., Rodríguez-
Iturbe, 1986; Lovejoy and Schertzer, 1990). This has inspired a vari-
ety of approaches that, while yielding realizations that preserve
relevant statistical (physical) attributes of the records (e.g., mo-
ments, autocorrelation, power spectrum, multifractal spectrum,
etc.), fail to capture specific details (e.g., positions of major peaks)
and relevant textures (e.g., periods of no activity) present in mea-
sured data sets.

These limitations, intrinsic to any stochastic approach, led us to
develop a fractal geometric methodology (e.g., Puente, 1996)
aimed at capturing the complexity of rainfall patterns, and not just
some key statistical features. By interpreting data sets as determin-
istic derived measures obtained transforming multifractals via
fractal interpolating functions (e.g., Barnsley, 1988), our ‘‘fractal–
multifractal’’ (FM) approach can indeed generate a vast class of
patterns, over one or more dimensions, that encompasses all the
distinctive characteristics of rainfall sets (e.g., Puente, 1996;
Obregón et al., 2002a, 2002b) and other complicated geophysical
patterns such as contaminant plumes in heterogeneous geological
formations (e.g., Puente, 2004). This richness in the possibility of
generating complex-looking deterministic sets with a relatively
small number of parameters results, however, in a very intricate
structure of the associated parameter space. Owing to this com-
plexity, the solution of the inverse problem for a give data set, that
is, searching for suitable FM parameters that produce a ‘‘match,’’
remained, to date, an elusive task.

In this article, we report on our latest efforts to solve this very
involved inverse problem. The proposed inversion strategy builds
upon a recent generalization of the classical particle swarm opti-
mization (PSO) search procedure (Fernández Martínez et al.,
2010) that, combined with a statistical sampling of the initial
conditions for the PSO, yields near-perfect parameter recovery
for synthetic data sets and excellent fits of natural historic rainfall
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records, such as a detailed Boston storm used in earlier studies
(Rodríguez-Iturbe et al., 1989; Puente and Obregón, 1996; Obregón
et al., 2002b).

2. Materials and methods

In this section, we summarize the underlying mathematics of
our FM geometric construction, including some of the extensions
we have introduced, and outline the strategy for the solution of
the inverse problem.

2.1. The original FM approach

In its simplest and original form, a FM pattern is obtained as the
projection of the graph of a fractal interpolating function illumi-
nated by a multifractal measure, as follows.

Firstly, the graph G = {(x, f(x))|x e [0, 1]} of such a fractal func-
tion f:x ? y passing by N + 1 ordered points along x, {(xn, yn)|x0

< . . . < xN, n = 0, 1, . . .,N}, is defined as the unique deterministic
attractor of N simple affine maps: (Barnsley, 1988)
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where the vertical scaling parameters dn satisfy |dn| < 1, and the
other parameters an, cn, en, and fn are defined via the contracting ini-
tial conditions
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which map the end values of the data in x into internal sub-
intervals.

In a practical setting, the graph of a fractal function f, typically
shaped as a convoluted wire and having a fractal dimension
1 6 D < 2, is obtained by a pointwise sampling of the attractor via
iterations of the affine maps, a procedure also known as the chaos
game (Barnsley, 1988). The idea is to start the process at a point al-
ready in G, e.g., a given (xn, yn), and progressively iterate the N
maps wn according to, for example, the outcomes of independent
"coin" tosses.

Secondly, as the chaos game is performed for a sufficient
amount of time, not only is the set G found, but also a unique
invariant measure is induced over G, which reflects how the attrac-
tor is filled up. The existence of such a measure (akin to a histo-
gram) allows computing unique—and hence, fully deterministic—
projections over the coordinates x and y (denoted herein by dx
and dy) that turn out to display irregular shapes as found in a vari-
ety of geophysical applications and beyond (see, e.g., Puente,
2004).

In order to clarify the notions, Fig. 1 shows an example of a frac-
tal wire passing through the three points {(0, 0), (0.50, �0.35),
(1, �0.20)} as generated by 106 iterations of the two maps
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As may be readily verified, the two maps w1 and w2 satisfy the
contractile Eqs. (2) and (3), operate in x over the intervals [0, 0.50]
and [0.50, 1], respectively, and have vertical scaling parameters
d1 = �0.8 and d2 = �0.6.

In addition to the graph G, Fig. 1 also displays the projections
(histograms) dx and dy, induced while carrying the previously
mentioned chaos game according to a biased 30–70% proportion
on w1 and w2.

As the x-coordinate in the maps is not affected by values of y (as
implied by the zero entry in Eq. (1)), dx ends up being a simple
deterministic (binomial) multifractal that, as it is related to a
deterministic multiplicative cascade, exhibits noticeable repeti-
tion. In turn, dy happens to be the derived measure of dx via the
fractal wire f and is computed, for any given value of y, by adding
the corresponding ‘‘events’’ dx that satisfy f(x) = y. As can be seen,
the geometrical FM construction generates a ‘‘random-looking’’
set dy that resembles a rainfall time series (e.g., Puente, 2004;
Obregón et al., 2002b) and such is the basis for using such an ap-
proach, with suitable parameter values, to attempt to model
hydrologic (geophysical) information.

Besides its clear geometric appeal, it happens that the FM ap-
proach may also be given a physical interpretation (Cortis et al.,
submitted for publication). For instance, as certain multifractals
can be used to characterize energy distributions in turbulent atmo-
spheric flows, the outputs dy may be interpreted as ‘‘reflections’’
(passive tracers) of turbulence or as non-trivial (fractal) integra-
tions of rather spiky multifractals that reflect the phenomenology
of random cascades. As the derived measures, for suitable sets of
parameters, do share the spectrum of singularities of so-called
‘‘universal multifractals’’ (Tessier et al., 1993), they may also be
thought of as specific realizations of random cascades, which have
the advantage of being fully characterized, in their entirety, by a
small set of parameters.

2.2. An extension with overlaps

The geometric procedure illustrated in Section 2.1 may be gen-
eralized so that the attractor G is no longer a function from x to y,
but a ‘‘cloud’’ of points. This is accomplished by iterating N affine
maps, as in Eq. (1), but replacing the contractive initial conditions
by

Fig. 1. The FM approach: from a multifractal dx to a projection dy via a fractal
interpolating function, a wire from x to y.
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