

# Periodicity of free subgroup numbers modulo prime powers



C. Krattenthaler<sup>a,\*,1</sup>, T.W. Müller<sup>b,2</sup>

<sup>a</sup> Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090
Vienna, Austria
<sup>b</sup> School of Mathematical Sciences, Queen Mary & Westfield College, University of London, Mile End Road, London E1 4NS, United Kingdom

## ARTICLE INFO

Article history: Received 10 February 2015 Available online 4 February 2016 Communicated by Dan Segal

MSC: primary 05A15 secondary 05E99, 11A07, 20E06, 20E07

Keywords: Virtually free groups Free subgroup numbers Modular group Periodic sequences

#### ABSTRACT

We characterise when the sequence of free subgroup numbers of a finitely generated virtually free group is ultimately periodic modulo a given prime power.

@ 2016 Elsevier Inc. All rights reserved.

\* Corresponding author.

*E-mail address:* christian.krattenthaler@univie.ac.at (C. Krattenthaler).

URL: http://www.mat.univie.ac.at/~kratt (C. Krattenthaler).

<sup>1</sup> Research partially supported by the Austrian Science Foundation FWF, grants Z130-N13 and S50-N15, the latter in the framework of the Special Research Program "Algorithmic and Enumerative Combinatorics".

 $^2$  Research supported by Lise Meitner Grant M1661-N25 of the Austrian Science Foundation FWF.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2015.12.026} 0021\mathchar`abular` 8693 \mathchar`o`` 0021\mathchar`abular` 8693 \mathchar`abular` 8693 \mathch$ 

## 1. Introduction

For a finitely generated virtually free group  $\Gamma$ , denote by  $m_{\Gamma}$  the least common multiple of the orders of the finite subgroups in  $\Gamma$  and, for a positive integer  $\lambda$ , let  $f_{\lambda}(\Gamma)$  be the number of free subgroups of index  $\lambda m_{\Gamma}$  in  $\Gamma$ . In [4], the authors show, among other things, that the number  $f_{\lambda}(\text{PSL}_2(\mathbb{Z}))$  of free subgroups of index  $6\lambda$  in the inhomogeneous modular group  $\text{PSL}_2(\mathbb{Z})$ , considered as a sequence indexed by  $\lambda$ , is ultimately periodic modulo any fixed prime power  $p^{\alpha}$ , if p is a prime number with  $p \geq 5$ . More precise results on the length of the period, and an explicit formula for the linear recurrence satisfied by these numbers modulo  $p^{\alpha}$  are also provided in [4]. As is well known, ultimate periodicity of the sequence  $(f_{\lambda}(\Gamma))_{\lambda\geq 1}$  is equivalent to rationality of the corresponding generating function  $F_{\Gamma}(z) = \sum_{\lambda>0} f_{\lambda+1}(\Gamma) z^{\lambda}$ .

The purpose of the present paper is to demonstrate that the periodicity phenomenon discovered in [4] holds in a much wider context, namely that of finitely generated virtually free groups. Indeed, our main result (Theorem 1) provides an explicit characterisation of all pairs  $(\Gamma, p^{\alpha})$ , where  $\Gamma$  is a finitely generated virtually free group and  $p^{\alpha}$  is a proper prime power, for which the sequence of free subgroup numbers of  $\Gamma$  is ultimately periodic modulo  $p^{\alpha}$ . Roughly speaking, for "almost all" pairs  $(\Gamma, p)$  the sequence  $(f_{\lambda}(\Gamma))_{\lambda \geq 0}$  is ultimately periodic modulo  $p^{\alpha}$  for all  $\alpha \geq 1$ , the only exception occurring when  $p \mid m_{\Gamma}$ and  $\mu_p(\Gamma) = 0$ , where  $\mu_p(\Gamma)$  is a certain invariant defined in (2.10) and discussed in the paragraph following that formula.

In order to further place our results into context, we point out that, for primes p dividing the constant  $m_{\Gamma}$ , an elaborate theory is presented in [9] for the behaviour of the arithmetic function  $f_{\lambda}(\Gamma)$  modulo p. Recently, this theory has been supplemented by congruences modulo (essentially arbitrary) 2-powers and 3-powers for the number of free subgroups of finite index in lifts of the classical modular group; that is, amalgamated products of the form

$$\Gamma_{\ell} = C_{2\ell} \underset{C_{\ell}}{*} C_{3\ell}, \quad \ell \ge 1;$$

cf. Theorems 19 and 20 in [3, Sec. 8], and Section 16 in [5], in particular, [5, Thms. 49–52]. These results demonstrate a highly non-trivial behaviour of the sequences  $(f_{\lambda}(\Gamma_{\ell}))_{\lambda \geq 1}$  modulo powers of 2 if  $\ell$  is odd (in which case  $\mu_2(\Gamma_{\ell}) = 0$ ), and modulo powers of 3 for  $3 \nmid \ell$  (in which case  $\mu_3(\Gamma_{\ell}) = 0$ ). For instance, for the sequence  $(f_{\lambda} = f_{\lambda}(\Gamma_1))_{\lambda \geq 1}$  of free subgroup numbers of the group  $\text{PSL}_2(\mathbb{Z})$ , one finds that:

(1)  $f_{\lambda} \equiv -1 \pmod{3}$  if, and only if, the 3-adic expansion of  $\lambda$  is an element of  $\{0, 2\}^*1$ ; (2)  $f_{\lambda} \equiv 1 \pmod{3}$  if, and only if, the 3-adic expansion of  $\lambda$  is an element of

$$\{0,2\}^*100^* \cup \{0,2\}^*122^*;$$

(3) for all other  $\lambda$ , we have  $f_{\lambda} \equiv 0 \pmod{3}$ ;

Download English Version:

# https://daneshyari.com/en/article/6414293

Download Persian Version:

https://daneshyari.com/article/6414293

Daneshyari.com