Periodicity of free subgroup numbers modulo prime powers

C. Krattenthaler ${ }^{\text {a,*,1 }}$, T.W. Müller ${ }^{\mathrm{b}, 2}$
${ }^{\text {a }}$ Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090
Vienna, Austria
${ }^{\text {b }}$ School of Mathematical Sciences, Queen Mary \& Westfield College, University of London, Mile End Road, London E1 4NS, United Kingdom

A R T I C L E I N F O

Article history:

Received 10 February 2015
Available online 4 February 2016
Communicated by Dan Segal
$M S C$:
primary 05A15
secondary 05E99, 11A07, 20E06, 20E07

Keywords:
Virtually free groups
Free subgroup numbers
Modular group
Periodic sequences

Abstract

We characterise when the sequence of free subgroup numbers of a finitely generated virtually free group is ultimately periodic modulo a given prime power.

© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

For a finitely generated virtually free group Γ, denote by m_{Γ} the least common multiple of the orders of the finite subgroups in Γ and, for a positive integer λ, let $f_{\lambda}(\Gamma)$ be the number of free subgroups of index λm_{Γ} in Γ. In [4], the authors show, among other things, that the number $f_{\lambda}\left(\operatorname{PSL}_{2}(\mathbb{Z})\right)$ of free subgroups of index 6λ in the inhomogeneous modular group $\mathrm{PSL}_{2}(\mathbb{Z})$, considered as a sequence indexed by λ, is ultimately periodic modulo any fixed prime power p^{α}, if p is a prime number with $p \geq 5$. More precise results on the length of the period, and an explicit formula for the linear recurrence satisfied by these numbers modulo p^{α} are also provided in [4]. As is well known, ultimate periodicity of the sequence $\left(f_{\lambda}(\Gamma)\right)_{\lambda \geq 1}$ is equivalent to rationality of the corresponding generating function $F_{\Gamma}(z)=\sum_{\lambda \geq 0} f_{\lambda+1}(\Gamma) z^{\lambda}$.

The purpose of the present paper is to demonstrate that the periodicity phenomenon discovered in [4] holds in a much wider context, namely that of finitely generated virtually free groups. Indeed, our main result (Theorem 1) provides an explicit characterisation of all pairs $\left(\Gamma, p^{\alpha}\right)$, where Γ is a finitely generated virtually free group and p^{α} is a proper prime power, for which the sequence of free subgroup numbers of Γ is ultimately periodic modulo p^{α}. Roughly speaking, for "almost all" pairs (Γ, p) the sequence $\left(f_{\lambda}(\Gamma)\right)_{\lambda \geq 0}$ is ultimately periodic modulo p^{α} for all $\alpha \geq 1$, the only exception occurring when $p \mid m_{\Gamma}$ and $\mu_{p}(\Gamma)=0$, where $\mu_{p}(\Gamma)$ is a certain invariant defined in (2.10) and discussed in the paragraph following that formula.

In order to further place our results into context, we point out that, for primes p dividing the constant m_{Γ}, an elaborate theory is presented in [9] for the behaviour of the arithmetic function $f_{\lambda}(\Gamma)$ modulo p. Recently, this theory has been supplemented by congruences modulo (essentially arbitrary) 2-powers and 3 -powers for the number of free subgroups of finite index in lifts of the classical modular group; that is, amalgamated products of the form

$$
\Gamma_{\ell}=C_{2 \ell} \underset{C_{\ell}}{*} C_{3 \ell}, \quad \ell \geq 1 ;
$$

cf. Theorems 19 and 20 in [3, Sec. 8], and Section 16 in [5], in particular, [5, Thms. 49-52]. These results demonstrate a highly non-trivial behaviour of the sequences $\left(f_{\lambda}\left(\Gamma_{\ell}\right)\right)_{\lambda \geq 1}$ modulo powers of 2 if ℓ is odd (in which case $\mu_{2}\left(\Gamma_{\ell}\right)=0$), and modulo powers of 3 for $3 \nmid \ell$ (in which case $\mu_{3}\left(\Gamma_{\ell}\right)=0$). For instance, for the sequence $\left(f_{\lambda}=f_{\lambda}\left(\Gamma_{1}\right)\right)_{\lambda \geq 1}$ of free subgroup numbers of the group $\mathrm{PSL}_{2}(\mathbb{Z})$, one finds that:
(1) $f_{\lambda} \equiv-1(\bmod 3)$ if, and only if, the 3 -adic expansion of λ is an element of $\{0,2\}^{*} 1$;
(2) $f_{\lambda} \equiv 1(\bmod 3)$ if, and only if, the 3 -adic expansion of λ is an element of

$$
\{0,2\}^{*} 100^{*} \cup\{0,2\}^{*} 122^{*}
$$

(3) for all other λ, we have $f_{\lambda} \equiv 0(\bmod 3)$;

https://daneshyari.com/en/article/6414293

Download Persian Version:
https://daneshyari.com/article/6414293

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: christian.krattenthaler@univie.ac.at (C. Krattenthaler).
 URL: http://www.mat.univie.ac.at/~kratt (C. Krattenthaler).
 ${ }^{1}$ Research partially supported by the Austrian Science Foundation FWF, grants Z130-N13 and S50-N15, the latter in the framework of the Special Research Program "Algorithmic and Enumerative Combinatorics".
 ${ }^{2}$ Research supported by Lise Meitner Grant M1661-N25 of the Austrian Science Foundation FWF.

