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a b s t r a c t

We extend a class of quadrature-based predictor–corrector techniques for root-finding to

multivariate systems. They are found to have a rate of convergence of 1 + √
2 regardless

of the degree of precision for the quadrature technique from which they are derived, pro-

vided it is at least one. By reusing the linear system from the previous iterate, this class

incorporates a significant improvement in computational time relative to the standard class

through the inclusion of an LU-decomposition during the iteration. Complexity is equiva-

lent to Newton’s Method, as they only require knowledge of F(x) and F′(x).

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Systems of nonlinear equations are prevalent throughout the field of applied mathematics. They are especially promi-

nent in the study of numerical discretization schemes for nonlinear ordinary (eg. [1–4]) and partial differential equations

(eg. [1,5–11]). Approximation techniques for nonlinear systems generally rely on solving a sequence of linear systems that

converge to the solution of the nonlinear system. In the absence of sparsity or special structure in these systems, the over-

all computational time can become unwieldy. Therefore, one of the main goals in developing techniques for approximating

these solutions is to reduce the number of functional evaluations and overall computational time.

Recent studies (eg. [13,15,16,19,21–23,25–27,29] and references therein) have examined the application of quadrature for-

mulae toward the development of root-finding methods exhibiting high rates of convergence. These studies have primarily

focused on the solution of single univariate nonlinear equations, rather than systems. In a recent paper [21], the author

examined convergence of the predictor–corrector method

x∗
n = xn − f (xn)∑m

k=1 wk f ′(λkxn−1 + (1 − λk)x∗
n−1

)

xn+1 = xn − f (xn)∑m
k=1 wk f ′(λkxn + (1 − λk)x∗

n)
. (1)

This method is a modification of the modified Newton’s method (mNm) family presented in [15]
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x∗
n = xn − f (xn)

f ′(xn)

xn+1 = xn − f (xn)∑m
k=1 wk f ′(λkxn + (1 − λk)x∗

n)
. (2)

System (1) utilizes fewer functional evaluations per iteration (provided λk �= 1 for any k) and has a rate of convergence of

1 +
√

2, while System (2) has cubic convergence. When considering the balance of function evaluations and convergence

rate via the efficiency index [17], System (1) is found to be superior provided 1 ≤ m ≤ 3. In either system, convergence rate

is independent of m, so the optimal method is the iteration scheme based on the Midpoint Method, which was studied in

[25]:

x∗
n = xn − f (xn)

f ′( 1
2

[xn−1 + x∗
n−1

])

xn+1 = xn − f (xn)

f ′( 1
2

[xn + x∗
n])

. (3)

System (2) was extended to the p−dimensional case in [16],

x∗
n = xn − [F ′(xn)]−1F (xn)

xn+1 = xn −
[

m∑
k=1

wkF ′((1 − λk)xn + λkx∗
n)

]−1

F (xn) (4)

again resulting in cubic convergence. This method is advantageous to other cubically convergent methods for systems such

as Halley’s Method [18]

xn+1 = xn −
[

I + 1

2
Ln

(
I − 1

2
Ln

)−1
]

[F ′(xn)]−1[F (xn)]

Ln = [F ′(xn)]−1[F ′′(xn)][F ′(xn)]−1[F (xn)] (5)

and Chebyshev’s Method

xn+1 = xn −
[

I + 1

2
Ln

]
[F ′(xn)]−1[F (xn)] (6)

as it does not require the second Frechet derivative of F(x). However, it does require one to solve two linear systems per

iteration. In the absence of special structure in these systems, this would typically necessitate two rounds of Gaussian Elim-

ination per iteration, at a computational cost of O( 4
3 n3) flops per iterate.

In this paper we extend System (1) to the p-dimensional case,

x∗
n = xn −

[
m∑

k=1

wkF ′((1 − λk)xn−1 + λkx∗
n−1)

]−1

F (xn)

xn+1 = xn −
[

m∑
k=1

wkF ′((1 − λk)xn + λkx∗
n)

]−1

F (xn). (7)

This system is shown to have a rate of convergence of 1 +
√

2, independent of m. However, due to the reuse of the matrix

�n−1 =
m∑

k=1

wkF ′((1 − λk)xn−1 + λkx∗
n−1) (8)

when calculating both xn and x∗
n, one can generate the LU-decomposition of �n−1 during the calculation of xn and use this

data to calculate x∗
n. Only one round of Gaussian Elimination is required per iteration, reducing the computational time by

nearly 50% per iteration for large systems, relative to System (4).

2. Iterative method

Suppose that F : R
p → R

p is continuously differentiable on a convex set D ⊂ R
p. Then, for x, y ∈ D,

F (y) − F (x) =
∫ 1

0

F ′(x + t(y − x))(y − x)dt. (9)
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