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We show that an alternating knot with unknotting number 
one has an unknotting crossing in any alternating diagram. 
We also prove that an alternating knot has unknotting 
number one if and only if its branched double cover arises 
as half-integer surgery on a knot in S3, thus establishing a 
converse to the Montesinos trick. Along the way, we reprove a 
characterisation of almost-alternating diagrams of the unknot 
originally due to Tsukamoto. These results are established 
using the obstruction to unknotting number one developed 
by Greene.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Given a knot K ⊂ S3, its unknotting number, u(K), is a classical knot invariant 
going back to the work of Tait in the 19th century [39]. It is defined to be the minimal 
number of crossing changes required in any diagram of K to obtain the unknot. Upper 
bounds for the unknotting number are easy to obtain, since one can take some diagram 
and find a sequence of crossing changes giving the unknot. It is far harder to establish 
effective lower bounds for the unknotting number, as it is not generally known which 
diagrams will exhibit the actual unknotting number [1,2,18]. One classical lower bound 
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is the signature of a knot as defined by Trotter [42], which satisfies |σ(K)| ≤ 2u(K)
[28]. This is a particularly useful bound, since it may be computed in a variety of ways 
[13,42]. Other bounds and obstructions have been constructed through the use of various 
knot-theoretic and topological invariants, including, among others, the Alexander module 
[23, Theorem 7.10], the Jones polynomial [38], and the intersection form of 4-manifolds 
[8,31].

The case of unknotting number one has been particularly well-studied. Recall that a 
minimal diagram for a knot is one containing the minimal possible number of crossings. 
Kohn made the following conjecture regarding unknotting number one knots and their 
minimal diagrams.

Kohn’s Conjecture (Conjecture 12, [21]). If K is a knot with u(K) = 1, then it has an 
unknotting crossing in some minimal diagram.

This has been resolved in a number of cases. The two-bridge knots with unknotting 
number one were classified by Kanenobu and Murakami [19], using the Cyclic Surgery 
Theorem [10]. For alternating large algebraic knots, the conjecture was settled by Gordon 
and Luecke [14]. Most recently, the conjecture was proved for alternating 3-braid knots 
by Greene [16], using a refined version of obstructions first developed from Heegaard 
Floer homology by Ozsváth and Szabó [33].

Our main result is the following.

Theorem 1. For an alternating knot, K, the following are equivalent:

(i) u(K) = 1;
(ii) The branched double cover, Σ(K), can be obtained by half-integer surgery on a knot 

in S3;
(iii) K has an unknotting crossing in every alternating diagram.

Since the minimal diagrams of alternating knots are alternating, this resolves Kohn’s 
conjecture for alternating knots [20,29,40].

In general, Kohn’s Conjecture seems somewhat optimistic. For example, there are 
14-crossing knots with unknotting number one and minimal diagrams not containing 
an unknotting crossing [37]. However these examples are not sufficient to disprove the 
conjecture, since they still all possess some minimal diagram with an unknotting crossing.

Theorem 1 can be interpreted as showing that understanding alternating knots with 
unknotting number one is equivalent to understanding almost-alternating diagrams of the 
unknot, where an almost-alternating diagram is one which is obtained from an alternating 
diagram by a single crossing change. A result of Tsukamoto shows that any reduced 
almost-alternating diagram of the unknot can be built up using only certain types of 
isotopies: flypes, which are illustrated in Fig. 2; and tongue and twirl moves, which are 
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