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ARTICLE INFO ABSTRACT

Enzymatic substrate promiscuity is more ubiquitous than previously thought, with significant consequences for
understanding metabolism and its application to biocatalysis. This realization has given rise to the need for
efficient characterization of enzyme promiscuity. Enzyme promiscuity is currently characterized with a limited
number of human-selected compounds that may not be representative of the enzyme's versatility. While testing
large numbers of compounds may be impractical, computational approaches can exploit existing data to de-
termine the most informative substrates to test next, thereby more thoroughly exploring an enzyme's versatility.
To demonstrate this, we used existing studies and tested compounds for four different enzymes, developed
support vector machine (SVM) models using these datasets, and selected additional compounds for experiments
using an active learning approach. SVMs trained on a chemically diverse set of compounds were discovered to
achieve maximum accuracies of ~80% using ~33% fewer compounds than datasets based on all compounds
tested in existing studies. Active learning-selected compounds for testing resolved apparent conflicts in the
existing training data, while adding diversity to the dataset. The application of these algorithms to wide arrays of
metabolic enzymes would result in a library of SVMs that can predict high-probability promiscuous enzymatic
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reactions and could prove a valuable resource for the design of novel metabolic pathways.

1. Introduction

Substrate-level enzyme promiscuity (Humble and Berglund, 2011;
Khersonsky and Tawfik, 2010; Sévin et al., 2016) has recently been
recognized as a far more ubiquitous phenomenon than previously as-
sumed, having important implications in several research areas. Sub-
strate-level enzyme promiscuity is a phenomenon in which an enzyme
can catalyze a reaction on more than one substrate, and the challenges
it presents in experimental methods have made development of in silico
methods for its prediction a subject of intense interest. Understanding
this phenomenon is critical to explaining many biological processes.
Enzyme promiscuity plays a key role in metabolite damage (Linster
et al., 2013), a phenomenon where essential metabolites are converted
to non-useful forms by reactions catalyzed by both homologous and
heterologous promiscuous enzymes in wild-type and engineered or-
ganisms. Metabolite damage can drastically reduce fitness, to the extent
that specific repair mechanisms have evolved to convert damaged
metabolites back into a form that can be used by the cell (Linster et al.,
2013; Van Schaftingen et al., 2013). Enzyme promiscuity is also critical
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in specific mechanisms of antibiotic resistance. Promiscuous enzymes
can compensate for inhibited essential enzymes, allowing bacteria to
circumvent the block. For example, methotrexate is an effective anti-
biotic against many microbes by inhibiting dihydrofolate reductase, an
essential enzyme. However, in Lieshmania major, a second enzyme,
PRT1, a broad spectrum pteridine reductase, is able to catalyze the
DHFR reaction and is not inhibited by methotrexate (Gourley et al.,
2001; Nare et al., 1997). Finally, enzyme promiscuity is important in
metabolic evolution: It has been hypothesized that promiscuous en-
zymes improve fitness by serving as a starting point in biochemical
evolution (DePristo, 2007; Khersonsky and Tawfik, 2010). This would
explain instances of related proteins having a wide range of activities
(Verdel-Aranda et al., 2015) and the presence of pathways that rescue
what would otherwise be lethal knockout strains (Kim and Copley,
2012).

Enzyme promiscuity also has substantial positive and negative ef-
fects on industrial biotechnology. Substrate-level promiscuity can en-
able a tantalizing array of novel biosynthetic routes to drugs and bio-
chemical. Promiscuous enzymes may also catalyze non-canonical
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reactions, allowing for the potential construction of metabolic routes to
compounds not known to occur in nature. On the other hand, enzyme
promiscuity can also be problematic to industrial biotechnology ap-
plications. Heterologous enzymes can promiscuously act on un-
anticipated native metabolites, diverting carbon from a desired end
product (Mafu et al., 2016); in engineered pathways, concentrations of
heterologous enzymes and metabolic intermediates are pushed to high
concentrations such that the probability of substrate-level promiscuity
is high, leading to unintended and deleterious effects on biochemical
production (Biggs et al., 2016). To address this, there has a been a wave
of computational approaches to design novel metabolic pathways and
predict byproduct-producing and/or damage reactions (Campodonico
et al., 2014; Carbonell et al., 2014; Cho et al., 2010; Lee et al., 2012). A
rising challenge in applying these methods is low accuracy, largely due
to a paucity of high-quality data on which to best train in silico pre-
diction models.

Enzyme promiscuity is commonly investigated by assaying the ac-
tivity of an enzyme on several different compounds selected ad hoc.
However, selecting substrates that best expand the knowledge about an
enzyme's promiscuity is a non-trivial task, as there are a large number
of possible substrates. Furthermore, several compounds may be prohi-
bitively expensive or difficult to procure, making an exhaustive ex-
perimental study infeasible. To avoid the time and expense of carrying
out activity assays, in silico methods can be substituted that either make
use of existing promiscuity data or reduce experimental effort by col-
lecting informative substrates. Promiscuity characterization is a task
that can be addressed by cheminformatics and machine learning
methods. While molecular modeling suites and docking approaches are
capable of providing more nuanced predictions about the interactions
between enzymes and potential substrates than 2D cheminformatics
approaches, crystal structure information they require is often not
available.

In order to predict enzyme promiscuity, previous studies
(Campodonico et al., 2014; Cho et al., 2010; Pertusi et al., 2015) have
deployed similarity-based approaches to predict an enzyme's ability to
catalyze a reaction on a given substrate. These methods rely on cata-
logues of known substrates as listed in databases such as the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2014) or
the Braunschweig Enzyme Database (BRENDA) (Schomburg et al.,
2013). Similarity methods (Willett, 2006) and supervised machine
learning methods are subsequently used to rank and/or classify likely
substrates, and has been applied to numerous protein targets and off-
targets in drug development efforts (i.e., CYP450 (Jacob and Vert,
2008; Terfloth et al., 2007; Wale and Karypis, 2009)). Support vector
machines (Scholkopf and Smola, 2002) (SVMs) are an approach that
has performed well in these studies and are trained on data belonging to
each of two labeled classes of interest. In the context of predicting
substrate-level enzyme promiscuity, the labeled classes are enzyme
substrates and non-substrates. The resulting model can then be used to
predict if an untested compound is a substrate or non-substrate (cf.
Methods). With a previous study estimating that 39% of enzymes in
KEGG exhibit substrate promiscuity (Carbonell and Faulon, 2010), the
extension of this approach to metabolic enzymes can streamline the
process of identifying promiscuous enzymes with a desired side activity
as a prelude to structure-based engineering efforts.

Existing databases used to train enzyme promiscuity models have
limitations. For most enzymes of biosynthetic interest, the datasets of
tested compounds are not very large. As an example, only ~5% of
enzymes across all Escherichia coli strains in the BRENDA database have
20 or more reported substrates (e.g., Fig. 1A, Table S1). Secondly, these
datasets contain disproportionately small numbers of inactive com-
pounds, without which the task of distinguishing between substrates
and inactive compounds is highly uncertain (Fig. 1C, D). Finally, ex-
isting datasets do not generally explore a diverse set of possible sub-
strates may contain many compounds of relatively low diversity, and
therefore low information content (Fig. 1B). While there is no consensus
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on the number of training compounds required to adequately train an
SVM classifier, it is clear that larger, more diverse compound datasets
will be required to improve classification power (Matykiewicz and
Pestian, 2012), and collecting this data efficiently is very important.

In order to probe chemical space in an efficient manner while still
avoiding the drawbacks of exhaustive experimentation, an active
learning method can be employed to direct the task of data collection.
Active learning (Settles, 2012; Warmuth et al., 2003) is a term applied
to a number of approaches that use information about the set of un-
labeled instances (i.e., untested compounds) in order to make strategic
choices about which unlabeled instances to query next so that the result
can efficiently train the classifier. In the case of SVMs for predicting
substrate-level enzyme promiscuity, active learning serves to prioritize
compounds in chemical space according to the additional predictive
power knowing the result of that substrate may add to the SVM. Active
learning could then offer a roadmap to experimentally efficient enzyme
characterization. However, a question remains as to whether this ap-
proach can provide sensible compounds as suggestion despite the re-
latively small datasets available.

In this study, we examine the utility of SVM-based machine learning
to predict enzyme substrate promiscuity across a range of enzymatic
chemistries and examine the ability of active learning to prioritize new
compounds for testing that efficiently expand the domain of applic-
ability of the classifier. Specifically, we compile four enzymes’ datasets
and develop SVMs for each of them using existing data, demonstrating
their efficacy on relatively homogenous chemical sets. We then develop
an active learning approach to strategically expand the available pool of
compounds—both active and inactive—to use as training data in de-
veloping SVM classification models for metabolic enzymes. To our
knowledge, we are the first to apply active learning to metabolic en-
zymes and demonstrate that the approach is effective. We use SVM
classification models to validate the efficacy of the active learning
method by cross validating existing data. We go on to use an active
learning approach to rank untested compounds containing the putative
molecular active site from the ZINC Is Not Commercial (ZINC) database
(Irwin et al.,, 2012)—a diverse catalogue of biochemically relevant
chemicals—as to their ability to add classifying power to the model for
a case study enzyme. Finally, we demonstrate that highly-ranked
compounds are enriched for chemical features that add chemical di-
versity to the dataset.

2. Results

2.1. Existing datasets have inadequate information content to evaluate
substrate-level promiscuity

Datasets with diverse chemical features are essential to predictive
SVMs, as datasets containing only highly similar chemicals do not lead
to accurate predictions on chemicals that are very different from the
training set. Diverse sets of chemicals, however, make more accurate
predictions for a wider set of potential substrates. To visualize the di-
versity of existing substrate-level promiscuity data, we first generated t-
distributed stochastic neighbor embeddings (tSNE, cf. Methods) for
each of the four compound datasets for the four enzymes considered in
this study: 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-car-
boxylic acid synthase (MenD) from Escherichia coli (Kurutsch et al.,
2009), carboxylic acid reductase (Car) from Nocardia iowensis (Akhtar
et al.,, 2013; Moura et al., 2016; Venkitasubramanian et al., 2008,
2007a, 2007b), amino acid ester hydrolase (AAEH) from Xanthomonas
citri (Kato et al., 1980), and 4-hydroxyacetophenone monooxygenase
(HAPMO) from Pseudomonas putida (Rehdorf et al., 2009) (Fig. 2, S2).
This embedding reduces the many-dimensions in which chemicals vary
to a two-dimensional projection while preserving the property that
highly similar chemical structures will generally cluster closely together
in the resulting visualization. In the case of the Car dataset, we noted
that there is one larger cluster that dominates (Fig. 3A), with a small
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