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a  b  s  t  r  a  c  t

Environmental  measurement  programs  can add value  by  providing  not  just  accurate  data,  but  also  a
measure  of that  accuracy.  While  quality  assurance  (QA) has  been  recognized  as necessary  since  almost
the  beginning  of  automated  weather  measurement,  it has  received  less  attention  than  the  data  proper.
Most  QA  systems  examine  data  limits  and  rate  of  change  for gross  errors  and  examine  data  for  unchanging
values.  Others  compare  data  from  other  locations  using  spatial  tools  or  examine  temporal  consistency.
There  exists  a  need  for analytical  tools  that  can  increase  the  likelihood  of detecting  small  errors,  such as  a
calibration  drift,  or  increased  variation  in  a sensor  reading.  Two  such  empirical  tools  are  described  herein
that can  inform  a first  level  QA  process.  One  operates  on data  from  a single  sensor,  using comparisons
between  a current  and  a prior  datum;  the  other  leverages  additional  information  from  a  duplicate  sensor
and  operates  on  only  the  current  datum.  The  objectives  of  this  paper  are  to describe  the  computational
methods,  illustrate  results  with  multiple-month  datasets  representing  both  nominal  and  failing  sensors,
provide  some  indications  of  validity  of assumptions  made  in the  derivation,  and suggest  where  in  a quality
assurance  program  these methods  could  be  applied.  With  little  additional  datalogger  programming  to
obtain  both  the  period  average  and the  ending  value,  these  tools  could  be added  to QA  toolkits  in  many
automated  weather  stations.

Published  by  Elsevier  B.V.

1. Introduction

Information obtained in an ongoing environmental measure-
ment program is inherently more valuable if it is accompanied
by indicators of data quality. Generally speaking, the indicators
of the quality constitute part of the metadata about the measure-
ment, although they have often not been recognized as such. As

Abbreviations: A, actual or true value corresponding to O (overbar represents
the  mean); B, bias corresponding to O (overbar represents the mean); CMRB, Cen-
tral  Mississippi River Basin; i, j, index for current and prior time; LTAR, Long-Term
Agro-ecosystem Research network; O, observation at point in time (overbar repre-
sents the mean); p, s, denote primary and secondary sensor values for O, A, B, and
R;  R, random component corresponding to O (overbar represents the mean); QA,
quality assurance; QC, quality control; T, temperature of air; Tmax, maximum air
temperature during period; Tmin, minimum air temperature during period.
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datasets become increasingly available online and to unknown
users, there is an increasing need to categorize data quality as, for
example, good, suspect, missing, or gap-filled (see proposed guide-
lines, WMO,  2004). However, even the judgement of ‘good’ data
is governed by the intended use. Such a judgement may  not be
appropriate for a different use. Accommodating other uses would
appear to be better served if the quality of the data were quantified.
Attempts to approach quantification have usually been limited to
citing manufacturer’s specifications of instrument accuracy. How-
ever, accuracy specifications may  be variable across the range of
the parameter measured, may  be dependent on other parameters,
may  be affected adversely by calibration drift or sensor failure, or
may  be heavily affected by the exposure of the instrument to the
conditions being measured.

Thus, it is increasingly desirable for information on accuracy to
be tied to each measured value. Current trends in database develop-
ment and publication suggest that sensor readings will be expected
to be accompanied by real-time estimates of the confidence in the
measurement, as a movement toward self-describing data (Gray,
2009), perhaps including record-level estimates of sensor uncer-
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tainty (Sadler, 1983). Such metadata would be an incremental
evolution of historical quality assurance and control (both generally
termed QA) of meteorological data collected at automated weather
stations. Gandin (1988) noted that automated QA followed the first
automated weather stations in the middle 1950s, and that complex
QA techniques have existed since the late 1960s. However, Gandin
(1988) also noted that adoption was slow because QA was  con-
sidered a purely technical activity and of secondary importance
by both meteorologists and administrators. Gandin (1988) also
provides a useful structure for the current paper, by categorizing
errors as random, systematic, and rough (gross) errors. The latter
include such events as abject sensor failure, as by broken cables or
shorts. Systematic errors could be caused by calibration errors, for
example. Random errors could perhaps be better termed as other
variation of unknown causes, including environmental variation.
Gandin’s review also provides a classification of QA tests, listing
plausibility checks (either range limits or distributional outliers),
checks for contradictions among sensors (e.g., heavy rain with no
clouds), spatial consistency checks (separate similar sensors), and a
comparison to models. Later literature also includes rate-of-change
limits and persistence checks (Meek and Hatfield, 1994; National
Oceanic and Atmospheric Administration, 1998; Shafer et al., 2000;
WMO,  2004; Hubbard et al., 2005; Hubbard et al., 2012; NOAA-
NWS, 2015). In distributed weather networks, spatial interpolation
has been widely deployed (Shafer et al., 2000; Hubbard et al., 2005;
Williams et al., 2011; Hubbard et al., 2012). In retrospective QA
assessments, temporal persistence (i.e., stuck sensor) or repetition
(i.e., repeated months or years) can be evaluated (Durre et al., 2010).

In special cases, individual weather stations may  deploy dupli-
cate or triplicate sensors as described below. Some modern
weighing rain gauges have triplicate vibrating wire sensors for
complex comparisons within each reported measurement. These
special cases often provide other tests important in a local set-
ting. In general, however, range limits, rate-of-change limits, and
static/persistence checks are amenable to use in a single weather
station (Meek and Hatfield, 1994).

However, these tests are much more suited to detecting the
rough or gross errors in Gandin’s (1988) classification, which are
extreme outliers, and are not as effective detecting statistically
valid but still erroneous data (NOAA-NWS, 2015). For example,
bounds on ingest systems usually set one pair each of range and
rate-of-change limits for air temperature, and those limits are
quite broad (∼±50 ◦C for air temperature, and ±20 ◦C/h for rate-
of-change limits). Seasonal limits can improve detection abilities
(e.g., Hubbard et al., 2005). However, using historical distributions
or extremes is unlikely to detect small changes in calibration. There
exists scope to identify or develop test statistics that could improve
detection of subtle sensor errors. Such statistics would be most
valuable were they to approach a known central tendency, vary
over a well-defined distribution during nominal sensor perfor-
mance, and vary over a much broader range during times of errors
in the sensor measurement.

Range limits based on deviation from mean values enable
a probabilistic QA statement based on those range limits. This
approach would be an extension from fixed limits as by Hubbard
et al. (2005), who used limits of 3 standard deviations from the
mean to flag suspect outliers. If available, instantaneous expected
variation values to compare with historical distributions could
inform confidence in measurements, by simply stating the current
value’s position on the historical empirical distribution. Histori-
cal distributions of the random term could place constraints on
expected values and therefore inform detection of a degraded
sensor. Either of these criteria requires appropriate thresholds to
discriminate between probable correct or erroneous data, with
appropriate balance between Type I and Type II errors (Durre et al.,
2008). Finally, if the manufacturer’s accuracy or equivalent infor-

mation from a lab test is known, empirically derived variation
values could inform judgments on additional sources of variation,
such as environmental exposure.

We describe two  methods to infer near-current distributions of
random variation while a sensor is deployed, to be used in a near-
real-time QA assessment conducted at the time of downloading
data from a datalogger. One method is for a single-sensor configura-
tion; the other is to infer the difference of variation for two sensors
in a duplicate sensor configuration. In both cases, data collected
both as instantaneous samples at the end of the interval and as an
average over the interval are leveraged to infer the random term.

The objectives of this paper are to describe the computational
methods, illustrate results with multiple-month datasets repre-
senting both nominal and failing sensors, provide some indications
of validity of assumptions made in the derivation, and suggest
where in a quality assurance program these methods could be
applied.

2. Materials and methods

2.1. Example data and context

We illustrate the procedure below using air temperature
collected at a recently installed weather station in the Cen-
tral Mississippi River Basin (CMRB) node of the Long-Term
Agro-ecosystem Research (LTAR) network. This station was
installed in August of 2015 for several purposes, one of
which was  to provide near-real-time weather data to the
LTAR network’s online portal (https://ltar.nal.usda.gov/ltar/met/
query?station=5& action query=Display+meteorology+data). This
weather station was designed with redundant sensors for most
common measurements. One set was  to the standards chosen by
the LTAR working group on meteorology (under development), and
the other was  to more nearly match the legacy weather station in
operation since 1992 (Sadler et al., 2015) to provide longitudinal
overlap with which to test non-homogeneities in the record as a
result of the changes.

In the CMRB station, the air temperature sensors are the same
(Campbell Scientific Inc., Logan Utah, model HC2S3 Temperature
and Relative Humidity Probe), but the shields are different. The
LTAR standard is aspirated (Apogee Instruments, Logan Utah, model
TS-100), where the legacy weather station used a passive radia-
tion shield (Campbell Scientific Inc., Logan Utah, model 41003-5
10-Plate Solar Radiation Shield). The air temperature sensor has a
stated accuracy of ±0.1 ◦C at 23 ◦C, diverging slightly at higher and
lower temperatures, but always within ±0.25 ◦C in the expected
environmental range of −20 ◦C to 40 ◦C. The aspirated shield has
been demonstrated by the manufacturer to perform very nearly
the same as industry-standard high-powered aspirated shields,
with differences in the range of ±0.02 ◦C (their stated resolu-
tion) (http://www.apogeeinstruments.com/comparison-of-three-
fan-aspirated-solar-radiation-shields/). No information is available
from the manufacturer on radiation-induced errors in the pas-
sive shield, but the manufacturer acknowledges that ventilation
in shields improves measurement accuracy.

The sensors were read by an automated datalogger (Campbell
Scientific Inc., Logan Utah, model CR3000) on a 3-s interval, with
data reported as a sample, average, maximum, and minimum at 5-
min  intervals. These values enabled statistical aggregation to longer
periods, including the LTAR network’s 15-min interval, with exact
averages and extrema. Software on a central server downloaded the
data from the datalogger on hourly intervals, and the 5-min data
records were combined to monthly files and stored.

The system operated from installation 3 September 2015
onward, except that the secondary sensor was put in place a
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