
Contents lists available at ScienceDirect

Forest Policy and Economics

journal homepage: www.elsevier.com/locate/forpol

Spatial interactions and optimal forest management on a fire-threatened
landscape

Christopher J. Lauera,⁎, Claire A. Montgomeryb, Thomas G. Dietterichc

a Oregon State University, Applied Economics, 213 Ballard Extension Hall, Corvallis, OR 97331, United States
b Oregon State University, Forest Engineering, Resources &Management, 218 Snell Hall, Corvallis, OR 97331, United States
c Oregon State University, Electrical Engineering and Computer Science, 2067 Kelly Engineering Center, Corvallis, OR 97331, United States

A R T I C L E I N F O

Keywords:
Wildland fire
Spatial
Ecological disturbance
Risk
Approximate dynamic programming
Reinforcement learning
Forestry

A B S T R A C T

Forest management in the face of fire risk is a challenging problem because fire spreads across a landscape and
because its occurrence is unpredictable. Accounting for the existence of stochastic events that generate spatial
interactions in the context of a dynamic decision process is crucial for determining optimal management. This
paper demonstrates a method for incorporating spatial information and interactions into management decisions
made over time. A machine learning technique called approximate dynamic programming is applied to de-
termine the optimal timing and location of fuel treatments and timber harvests for a fire-threatened landscape.
Larger net present values can be achieved using policies that explicitly consider evolving spatial interactions
created by fire spread, compared to policies that ignore the spatial dimension of the inter-temporal optimization
problem.

1. Introduction

Forest management is a dynamic problem; actions taken today have
important consequences for the future value of forest land. Determining
optimal management is further complicated by unpredictable ecolo-
gical disturbances; one important disturbance on many forested land-
scapes is wildfire. While fire is a natural process that can be vital to the
health of forest ecosystems, it can threaten values on the landscape such
as timber, homes in the wildland urban interface, watershed health, air
quality, and wildlife habitat. Significant amounts of money and re-
sources have been devoted to the task of eliminating damaging wildfire.
According to the 2015 Fire Budget Report, produced by the USDA
Forest Service,> 50% of the Forest Service's 2015 operating budget
was devoted to fire-related activities, compared to just 16% in 1995.
The USDA Forest Service spent more than $1.7 billion on fire sup-
pression costs alone in 2015 and has spent more than $1 billion in eight
of the last ten years on fire suppression activity (USDA, 2015).

Value on a forest landscape can be diminished, or destroyed, by
unpredictable events like fire, and the extent of the damage is at least
partially outside of manager control. Routledge (1980) and Reed (1984)
demonstrated that the optimal rotation age for timber harvest de-
termined by Faustmann (1968) can be adjusted to account for the
possibility of an unpredictable natural disaster damaging or destroying
a stand. They showed that the optimal rotation age decreases as the

probability of stand destruction increases. Reed built upon his model in
subsequent papers to demonstrate how optimal management will be
affected if fire arrival rate is a function of stand characteristics. He also
explored how to determine the optimal schedule of investment in fire
protection, such as fuel treatment or fire-fighting infrastructure (Reed,
1989, 1993). Many authors build upon Reed's insights; examples in-
clude Amacher et al. (2005) and Garcia-Gonzalo et al. (2014) who look
at how fuel treatment and silivicultural interventions affect optimal
rotation age for fire threatened forest stands. Daigneault et al. (2010)
examine how carbon sequestration is affected by manager response to
fire risk.

An important shortcoming of these models is that they focus on
management at the stand level and do not account for fire's ability to
spread between stands. Because fire can travel large distances across a
landscape, fire risk on an individual stand is a function of the condition
of the entire landscape. Several authors have created models to account
for fire behavior that includes spatial interactions. Wei et al. (2008)
separated fire arrival probability into ignition and spread probabilities.
These probabilities account for varying ecological factors such as slope
and wind direction. They used the conditional spread probabilities to
find locations of fuel treatments in the current time period to minimize
expected loss to fire on the modeled landscape. Ager et al. (2010) used
repeated simulation to compare the damage probabilities for structures
in the wildland-urban interface under different fuel management
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strategies when fire spreads. These models are static because they
consider only treatment in the current period and the expected value of
the treated landscape. Chung et al. (2013) developed a model that
places fuel treatments over two time periods to minimize expected loss.
The vegetation evolves over time, but no fire actually occurs. While this
model is intertemporal, it is not dynamic because it does not account for
how optimal management will adjust on a post-fire landscape, should
fire actually occur.

Stochastic dynamic programing is a natural method for determining
the optimal management of a fire-threatened forest landscape. Actions
are selected to maximize the current period value plus the expected
future value of the treated landscape given that optimal choices are
made in future periods as new knowledge becomes available (e.g.,
stochastic events are realized). This optimization strategy depends on
the principle of optimality (Bellman, 1957) which is the assumption
that no matter what the current action is, actions in all future states will
be optimally chosen. Solving a stochastic dynamic programming pro-
blem requires complete enumeration of all possible outcomes in each
time period; this can make even very simple problems intractably large
– the so-called “curse of dimensionality.” Konoshima et al. (2008, 2010)
was able to formulate and solve the optimal fuel treatment and harvest
problem as a stochastic dynamic problem by considering only 2-per-
iods, 7 management units, 4 stand age classes, 4 treatment options, and
2 weather conditions. They demonstrated that landowners will try to
protect on-site timber values by shortening rotations, as suggested by
Reed (1984), but will try to protect adjacent timber values by post-
poning harvest to avoid high spread rates associated with young stands.
This study demonstrated the importance of accounting for stochasticity
and spatial interactions in a dynamic decision framework, but its
practical usefulness for decision-making and policy analysis is limited.

Both the spatial and intertemporal aspects of solving for the optimal
management of a fire-threatened landscape contribute to the curse of
dimensionality. Heuristic solution methods, such as simulated an-
nealing or tabu search, are widely used to identify management that is
approximately optimal in a given time period for large landscapes with
spatial interactions. Chung et al. (2013) is one example. See also
Bettinger et al. (2003). But these methods alone are not sufficient for
solving dynamic problems in which managers respond to new in-
formation as it becomes available. For that, we need an approximate
approach to solving dynamic programming problems.

In this study, we develop a method for incorporating spatial inter-
actions into a dynamic decision process that accounts for the stochastic
nature of fire by using a machine learning technique known as ap-
proximate dynamic programming (Sutton and Barto, 1998; Powell,
2007, 2009). We applied our method to model optimal timing and
placement of timber harvest and fuel treatment on a 64-unit landscape
that we parameterized to represent the ecological conditions of south-
west Oregon. The value functions we estimate provide a way to model
the expected benefits, costs, and externalities associated with different
management actions which have uncertain consequences in multiple
locations on the landscape. The value function implies an optimal
policy for management actions. We evaluate the effectiveness of our
method by comparing simulated outcomes over 150-year time horizons
to outcomes generated using Reed and Faustmann timber harvest ro-
tations and to a rule-of-thumb approach to placing fuel treatments. The
policies generated by our model lead to higher average net present
values (NPV) on the landscape compared to the benchmark policies. In
the concluding section, we highlight the relevance of our key findings,
describe model limitations, and discuss plans to extend the basic model
to address relevant questions in forest management.

2. Model

A bio-economic model can provide insight into factors that drive
landowner behavior and can be used to determine an optimal set of
actions for a decision-making agent when landscape conditions give rise

to fire risk that affects stand value. Our model accounts for the financial
incentives faced by the agent. It could also be specified to include non-
market incentives. The ecological processes that determine the evolu-
tion of the landscape can be thought of as a constraint on the agent's
actions. Vegetation evolves and stochastic disturbances (in this case,
fire) occur over time so that future costs and revenues depend on ac-
tions taken today and, likewise, the present value depends on those
future rewards. Finally, because fire spreads across the landscape
creating interactions that affect stand value, our model is explicitly
spatial.

2.1. Markov decision process and Bellman's equation

We represent the economic and ecological components of this pro-
blem as a Markov Decision Process (MDP) (Puterman, 1994) that has
five different components.

1. A set of possible States, which depends on the attributes of the in-
dividual stands contained by the landscape. The state St describes
the conditions of the landscape at time t.

2. A set of Actions that describes what a land manager can do. In our
setting, the overall action at time t is a vector xt of the management
activities applied to each stand in the landscape. For each stand,
there are four possible management activities: harvest timber (clear-
cut), treat fuel to reduce fire risk, implement both activities, or do
nothing; in each time-step one of these four options must be chosen
for each stand.

3. A Reward Function, C(St, xt) that describes the immediate (i.e. cur-
rent period) costs or revenues associated with a particular action for
a particular state.

4. A State Transition Model, St+1 = S′(St, xt, Wt), that describes how the
state evolves over time. The transition from St to St+1, is a function
of the current state, St, the current action, xt, and a vector of sto-
chastic events, Wt, which includes fire arrival and weather.

5. A Discount Factor, δ, that determines how current rewards are valued
relative to future rewards.

To analyze this MDP, we employ Bellman's equation (Bellman,
1957), a recursive equation that assigns a value to a particular state Eqs.
(1a), (1b) by computing an expectation over the values of future states.
This equation represents a landowner's decision-making process. It can
be broken into two parts – immediate cost or benefit of a management
action, which is captured by the reward function, and the expectation of
the maximized value of the next period's state, V(S′(St,xt,Wt)). We
employ the so-called action-value representation, also known as the “Q-
value” (Watkins and Dayan, 1992). The quantity Q(St,xt) is the ex-
pected return of taking action xt in state St and then behaving optimally
thereafter. In approximate dynamic programming, it is often useful to
first compute Q(St,xt) for each possible action xt and then choose the
action that has the highest Q value. This is the optimal action in state St,
and it defines the value V(St).

=V S max Q S x( ) ( , )t
x

t t
t (1a)

where Q(St,xt) is the value of performing action xt on the landscape in
state St and behaving optimally thereafter:

�= + ′+Q S x C S x δV S S x W( , ) ( , ) [ ( ( , , ))]t t t t S t t tt 1 (1b)

2.2. Spatial interactions

To incorporate spatial interactions, we decompose Q(St,xt) into se-
parate action-value functions for each stand in the landscape. Let
Qi(St,xt) denote the contribution of stand i=1,2,… , I to the value of
the overall landscape at time t. Note that the state St, action xt, and
stochastic event Wt are not indexed by i because they represent the
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