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In strategic level planning, the harvest levels are often obtained by maximizing NPV of the forest area. The
resulting harvests within each planning period are then typically scattered over the area. In practical forestry,
clustering harvests is seen as important, but tools for planning harvest clustering applicable for practical level
planning are largely missing. In previous studies, clustering harvests has been seen as an objective in itself rather
than means to save costs. It has thus not been possible to define an optimal level for clustering in order to max-
imize the NPV. In this study, clustering is carried out by minimizing the total opening costs (TOCs) for harvest
sites. TOC is defined as a fixed cost for one contiguous harvest cluster. It consists of e.g. transferring themachines
to the harvest site, waiting time for themachinery andworkers due to the transfer, delineation of the harvest site
and administrative work required for each harvest site. Our results show that with small opening cost, it is opti-
mal to follow the strategic level plan, while as the opening cost increases it is optimal to make larger and larger
harvest clusters. The clustering also affects the treatments carried out: with high opening costs the harvests in
some stands will be postponed for 10 years or more, or the treatment may change from the strategic level
optimum.

© 2016 Published by Elsevier B.V.
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1. Introduction

In strategic level planning, harvest levels are typically obtained by
maximizing NPV of the forest area. The resulting harvests within each
planning period are then most likely scattered over the forest area. In
practical forestry, clustering of harvests is desirable. Although there
are plenty of tools designed for clustering the harvests available, tools
designed for the scale needed (for several hundred thousands of stands)
are largely missing (Laamanen and Kangas, 2011; Kangas et al., 2014).
The importance of such clustering may increase in the future, as many
forest organizations start using laser-scanning based micro stands as
management unit rather than traditional stands in their planning sys-
tems (Packalén et al., 2011).

Clustering harvesting activities in forest planning can be motivated
by the potential savings in operational costs associatedwith the logistics
of machinery needed to perform harvesting activities and administra-
tive tasks related to opening a new harvesting site (Öhman and
Eriksson, 2010). The costs of moving machinery may be high and it is
therefore important to plan (at the tactical level) in which region of

the forest area the machinery should be placed at any given time. On
the other hand, clustering of harvests will introduce economic loss as
the optimal timing of treatments from the strategic level plan are not
followed and harvests are performed either too early or too late for
the stands in question. The losses arising from not following the strate-
gic level planmay be higher for stands with high site index than for the
stands with poor site index. This will affect a forest level analysis of the
profitability of clustering.

Finding the optimal number of clusters of harvest activities
(harvest sites or openings) in a forest landscape must take into
account the neighboring relationships among the forest stands. The
idea is that each harvest site is a contiguous set of stands being the
optimal number and the combined size of the clusters controlled
by the cost of one harvest site. This neighborhood can be defined
based on the vicinity of the stands. However, in a real-life problem
it could be defined to account for the accessibility of the stands: the
stands accessible from a given forest road are neighbors even if
they have no common border, but stands that have a common border
but are not accessible from the same forest road should not be
defined as neighbors. The problem becomes challenging since the
potential number of clusters that can be formed over the forest
landscape could be extremely large (see e.g. Borges et al., 2015;
Goycoolea et al., 2009; McDill et al., 2002), and especially so if the a
maximum size (area) of a harvest site is not specified.
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Most of the studies carried out so far have applied heuristic algo-
rithms. The harvest clustering problems have been solved by introduc-
ing spatial goals into the optimization problem, for instance by
maximizing the proportion of boundaries between cells harvested at
the same time or minimizing the perimeter of contiguous harvest
areas (e.g. Heinonen et al., 2007; Lu and Eriksson, 2000; Öhman and
Lämås, 2003; Öhman and Eriksson, 2010; Pukkala et al., 2009).

Moreover, the applications typically deal with fairly small areas, es-
pecially the applications of exact optimization methods. With heuristic
methods, especially methods such as decentralized cellular automation
method (Pukkala et al., 2009), larger areas have been dealt with. Even
larger areas can be dealt with using the hierarchic planning approach
(Kangas et al., 2014). However, the performance of computers and opti-
mization algorithms is increasing all the time and therefore possibilities
of using exact methods for such complicated problems will improve in
the future.

In most studies carried out so far, clustering harvest activities has
been an objective in the problem (see e.g. Öhman and Eriksson, 2010),
and giving more weight to clustering will increase the size of openings
in the forest. Assuming the plan without the clustering goals or con-
straints is economically optimal, increasing the weight of harvest
clustering (either as a goal or as a constraint) will result in larger eco-
nomic losses due to diminished value growth. The weights are based
on the idea that the clustering is an important goal (e.g. environmental
goal) rather than amean to reduce costs. Therefore, an analysis showing
whatwould be the optimal level of clusters is still missing. Such an anal-
ysis requires that both the gains and losses due to clustering can be
calculated in monetary terms.

The aim of this research is to focus on how the cost of opening new
harvesting sites affects the clustering of harvesting activities. The open-
ing cost (OC) is defined as a fixed cost for one contiguous harvest clus-
ter. It reflects the costs of transferring forest machines to the harvest
site, the delineation of the harvest site and administrative work re-
quired for each harvest site and other costs possibly related to the open-
ing. We solve the problem using a branch-and cut algorithm method
(see e.g. Martins et al., 2004). We analyze how the opening costs affect
the number of openings and the average size of opening area, net pres-
ent value of the forest (NPV) and also the effect of clustering on the ac-
tual optimal treatment for stands. We will also analyze the effect of
forest structure on the profitability of clustering. The research is based
on hypothetic forest data.

2. Material and methods

2.1. Experimental design

To provide data for the analysis, we constructed three artificial forest
landscapes, more specifically three forest structures referred to as
young (the age distribution weighted towards young stands), even
(uniform age distribution) and old (the age distribution weighted to-
wards old stands) due to the age structure of the forest. We apply
three realizations of each forest type, nine forests in total (from now
called data sets). Each data set consists of 400 stands distributed over
a grid of 20 × 20 cells. The area of each cell equals one ha. The data
sets were generated based on 8990 sample plots from the Norwegian
national forest inventory (NFI). Sample plots were chosen with respect
to productivity, stocking density and stand age in order to represent a
wide range of forest conditions in Norway. The grid configuration and
the area assigned to each cell prevent effects of MU size and number
of neighbors per MU on the results. The neighborhood considered be-
tween the MUs was such that if any two MUs share a border or a single
point they are consider as neighbors. This definition of neighborhood
was selected, as the stands are simulated, but the neighborhood can
be defined according to the needs of the problem at hand.

For each NFI plot a set of treatment schedules were simulated by the
growth simulator GAYA (Gobakken, 2003; Hoen and Eid, 1990). The

simulator takes as input a set ofMUs (plots) and a set of rules which de-
fine how and when forest treatments may be applied. The output pro-
vides detailed information on common forest state variables (e.g.
standing volume) as well as treatments (e.g. harvested volumes) and
corresponding economic values (incomes and costs) for all periods in
each treatment schedule. In addition, the NPV based on an infinite plan-
ning horizon, i.e. after the initial simulation period, is provided for each
treatment schedule by adding the value of the ending inventory. This is
calculated by projecting forest growth for the ending inventory accord-
ing to preset forest treatment rules and then calculating the net present
value of the projected growth. The preset forest treatment rules are
based on a series of simulations and optimizations to be near optimal.
The value of the ending inventory is thus not optimized in the same
manner as for the treatment in the analysis period itself.

In this study the following treatments were allowed; natural regen-
eration and planting, pre-commercial thinning, conventional thinning
and final harvest. This means that not only final harvests contribute to
the volume harvested in a period but also conventional thinnings. Sim-
ulations were performed for 12 5-year periods. A 3% discount rate was
applied. The number of treatment schedules for each data set is
shown in Table 1.

2.2. The strategic model

The strategic model maximizes NPV. Only one treatment schedule
was allowed within an MU. This model also account for a sequential
flow of the harvested volume over the entire time horizon with a
maximum variation between consecutive planning periods. Thus, the
mathematical formulation was as follows:

Max NPV ð1Þ

Subject to

X

k∈TSi

yik ¼ 1;∀i∈N ð2Þ

X

i∈N

X

k∈TSi

Ainpvikyik−NPV ¼ 0 ð3Þ

X

i∈N

X

k∈TSi

hviktyik−HVt ¼ 0;∀t∈T ð4Þ

1−αð ÞHVt ≤HVtþ1;∀t∈T Tj jf g ð5Þ

1þ αð ÞHVt ≥HVtþ1;∀t∈T Tj jf g ð6Þ

yik∈ 0;1f g;∀i∈N;∀k∈TSi ð7Þ

NPV≥0 and HVt ≥0;∀t∈T ð8Þ

where,N is the set ofMUs, T is the set of planning periods, TSi is the set of
treatment schedules of MUi. The Ai is the productive area of MUi, npvik is
the NPV associated with MUi when treated by treatment schedule k,
vhikt is harvest volume in planning period t when treatment schedule
k is applied in MUi. The HVt is the total harvest volume in planning
period t.

Table 1
Number of treatment schedules for each data set within a forest structure.

No. treatment schedules

Dataset Forest structures

Young Even Old

F1 13,795 16,334 17,439
F2 15,903 15,555 16,259
F3 14,056 16,191 18,214
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