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A B S T R A C T

The computation of confidence intervals frequently leads to arguable results due to lack of rigor when experi-
mental errors are analyzed in kinetic experiments. Particularly, the usual Gaussian approach may not be ade-
quate when the variable of interest is the reactant conversion, as this variable is constrained between very hard
limits: 0 and 1. For this reason, the present work focuses on the development of analytical and numerical
procedures for more accurate description of experimental errors in first-order reaction systems, which can be
eventually extended to more complex reaction processes. Based on the proposed analytical and numerical
schemes, new statistical distributions (named here as the kinetic distributions) can be derived to allow for more
appropriate representation of conversion fluctuations and the respective statistical quantities, including the
confidence intervals, which can be used more advantageously for analyses of kinetic data. In particular, it is
shown that conversion errors are heteroscedastic, going through a point of maximum when conversion is al-
lowed to increase from 0 to 1, and that confidence intervals are not symmetrical in respect to the averages, as
assumed by Gaussian analyses.

1. Introduction

Mathematical models find valuable and widespread use in the field
of catalysis. From the most fundamental theoretical aspects to the most
complex reaction systems, they are used by researchers to enlighten
reaction mechanisms, fit experimental data, and validate proposed
hypotheses [1,2]. Besides, models are used in all sorts of kinetic studies,
including very different experimental problems, such as chemical vapor

deposition of carbon nanotubes, enzymatic assays, and sewage treat-
ment [3–5].

Kinetic models depend on model parameters that are difficult (not
to say impossible) to measure and must be inferred from available ex-
perimental data. Definition of model parameters is fundamental during
model building because they describe the relative importance of dis-
tinct experimental effects on the analyzed process responses. Without
proper determination of the model parameters, models become useless.
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When the proposed study requires the evaluation of model para-
meters, it is common to estimate the unknown parameters through
minimization of an objective function (or metrics) that represents the
distance between the values predicted by the model and the values
obtained experimentally [2]. In order to formulate the objective func-
tion, it is usually necessary to postulate several simplifying assump-
tions, either to reduce the experimental load or simply because it is
impossible to know beforehand all features of a particular experimental
system. Most times, however, these assumptions are not validated or
verified, which may lead to inappropriate conclusions and parameter
values.

In order to illustrate this point, Schwaab et al. [6] showed that the
confidence region of parameter values may present very peculiar shapes
when the nonlinear behavior of model responses and experimental
measurements are considered. Such region can be quite distinct from
the hyper-ellipsoidal shape commonly assumed for confidence regions,
as obtained for linear model responses and Gaussian distribution of
measurement fluctuations. Similarly, Schwaab et al. [7–9] showed that
improper model parameterization may lead to highly correlated model
parameters, which can significantly degrade the final model perfor-
mance. Finally, it is usually assumed that fluctuation errors are constant
throughout the experimental region, even though this cannot be sup-
ported by independent error analyses, as discussed by Alberton et al.
[10].

Certainly, one of the commonest assumptions is the Gaussian dis-
tribution for the experimental fluctuations. This assumption is so pop-
ular that many do not understand that, although the Gaussian dis-
tribution is a model that may find suitable applications in numerous
situations, it may also be inadequate for the interpretation of several
other practical problems [2]. For this reason, the proper characteriza-
tion of experimental fluctuations can be of paramount importance for
correct assessment of experimental analyses and interpretation of ki-
netic models. Despite that, the detailed characterization of experi-
mental fluctuations in kinetic studies is often neglected, due to diffi-
culty to investigate how these unavoidable fluctuations depend upon
the reaction conditions, among other reasons. Particularly, the behavior
of the experimental fluctuations can be linked to specific characteristics
of the experimental system, including measuring techniques and op-
eration procedures, naturally causing this type of investigation to be
challenging [2].

As experimental fluctuations are related to uncontrolled random
causes, the proper characterization of experimental variability requires
replication of experimental trials a sufficiently high number of times
[11], discouraging the fundamental investigation of fluctuations and
explaining why certain statistical distribution models are needed and

assumed to be valid a priori during an experimental investigation.
Particularly, the Gaussian distribution is useful because it may be ap-
plied to a large array of physical problems, provides an asymptote for
problems dominated by infinitely many sources of variability and re-
quires the definition of only two parameters (mean and variance) for its
use. Moreover, the Gaussian distribution is mathematically tractable,
allowing for a number of important theoretical developments, which
include the derivation of t-Student, F-Fisher, and chi-square tests for
analyses of means and variances of experimental data samples [2,11].

When the Gaussian distribution is used to define boundaries for
conversion and selectivity measurements in kinetic studies, however,
anomalous results may be obtained. For instance, confidence intervals
may lie outside the [0,1] interval (which makes no physical sense),
because the Gaussian distribution is defined in the infinite domain,
while conversions and selectivities lie in the much narrower finite in-
terval [0,1]. An obvious conclusion is that conversion and selectivity
measurements do not follow the Gaussian distribution, although it may
be true that this distribution may provide useful fits for experimental
fluctuations in certain experimental systems.

Based on the previous paragraphs, the present work focuses on the
development of analytical and numerical procedures for more accurate
description of experimental errors in first-order reaction systems. Based
on the proposed analytical and numerical schemes, new statistical
distributions (named here as the kinetic distributions of fluctuation mea-
surements) are derived to allow for more appropriate representation of
conversion fluctuations and the respective statistical quantities, in-
cluding the confidence intervals, which can be used more ad-
vantageously for analyses of kinetic data. In order to do that, a first-
order reaction is assumed to take place in a model reacting system, as
several systems can be represented with good accuracy by first-order
reaction models. Besides, it is well known that more complex nonlinear
functions can be represented locally by simpler models, especially when
experimental fluctuations are not too large [12]. Nevertheless, as
shown in the proposed numerical development, this underlying as-
sumption does not constitute a major drawback of the proposed ana-
lysis, for the first-order reaction rate assumption can be easily relaxed
in more involving numerical analyses in order to represent more com-
plex reaction systems.

Stochastic methods are largely applied in Chemical Engineering,
both as an alternative for finding global maxima and as an elegant,
efficient way to validate simulations [13–15]. What is proposed in this
work is, though, to explore the error distributions themselves via a
stochastic approach, something that is seldom seen in the scientific
literature. This is of the utmost relevance since errors in the most
fundamental variables of the problem must have their statistical

Nomenclature

a Variability of catalytic activity
b First parameter for the variability of concentration mea-

surements
c Second parameter for the variability of concentration

measurements
Ci Concentration of species i
Ci

e Concentration of species i at equilibrium.
CA0 Initial concentration of species A
CA

m Measured value of the concentration of species A
k1 Specific reaction rate for the direction reaction
k2 Specific reaction rate for the reverse reaction
k′ Simplified specific reaction rate
k′m Measured value of k′
N Number of random numbers to be used in the numerical

procedure
NE Number of experiments

P (x )cum i Cumulative probability of variable x at point i
Sx Sample standard deviation of x
t Time of reaction
x Reaction conversion
xm Measured value of x
x Sample mean of x
εc Experimental fluctuations of concentration
εk′ Experimental fluctuations of k′
εC

(1) Error measurement at initial concentration
εC

(2) Error measurement at equilibrium concentration
εC

(3) Error measurement at sample concentration
εx Conversion fluctuations
εx Measurement bias of x
℘ (z)z Probability distribution of variable z
σa

2 Variance of a
σa Standard deviation of a
μa Mean of a
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