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h i g h l i g h t s

� Collisions of chemical reactants and
nanoparticles are very important.

� Smoluchowski’s collision rate
coefficient is questioned.

� An equation for estimating the
collision rate coefficient kc was
proposed.
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a b s t r a c t

In this work, the validity of the Smoluchowski collision rate coefficient (SCRC) to describe random
collisions of nano-particles and molecules is questioned and an alternative equation for this purpose is
proposed. This latter is based on geometric considerations and basic concepts of diffusion. The proposed
equation agrees, at least qualitatively, with experimental data of the coagulation rate coefficient reported
in the literature for particle radii <50 where the SCRC equation deviates by up to three orders of magni-
tude. To quantitatively validate the proposed equation more experimental data is needed. Implications of
these findings on chemical kinetics are briefly discussed.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Random collision between molecules or colloidal particles is
ubiquitous in many different fields of nature and engineering,
including the estimation of the rate coefficient for diffusion-
controlled chemical reactions (e.g. polymerization) and the growth
of particulate matter like in combustion, in the early stage of for-
mation of planets from interstellar dust, aggregation/coagulation
of colloidal particles, etc. The particle aggregation/coagulation
refers to two particles colliding and adhering together, leading to

the increase of average particle size and the decrease of particle
number concentration.

For the mathematical description of random collisions between
particles or solute molecules in solution (from now on ‘‘entities”)
separated a distance much greater than their own size, the
Smoluchowski’s equation (1917) has been widely used. An analyt-
ical solution to this equation is only possible in the case of simple
collision kernels ki,j between particles i and j (Kruis et al., 2000). For
monodisperse particles its measurement is done at the early stages
of coagulation experiments. In this case, the collision rate coeffi-
cient kc for particles of the same size (i.e. k1,1) in the length scale
mentioned at the beginning of this paragraph, is given by

kc ¼ 8prD ð1Þ
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where D is the diffusion coefficient of the particle which, for the
case of spheres, can be calculated with the well-known Stokes-
Einstein equation.

D ¼ KBT
6pgr

ð2Þ

where KB, T and g are the Boltzman constant, the absolute temper-
ature and viscosity of the medium, respectively. Substitution of
Eq. (2) in (1) yields

kc ¼ 4KBT
3g

ð3Þ

Notice that according to Eq. (3), kc is independent of particle
size. Eq. (1) can be obtained by applying Fick’s laws in steady-
state and spherical coordinates, to the collision of a single moving
particle with a target particle of the same radius (r) in a stagnant
fluid (Hiemenz, 1986).

If the restriction is removed that the ‘‘target” particle is station-
ary, then the diffusion coefficient of the moving particle is replaced
by relative diffusion coefficient of the two, which is simply 2D
when the particles are the same size (Hiemenz, 1986). With this
change and using the Stokes-Einstein equation for calculating D,
Eq. (1) becomes

kc ¼ 16prD ¼ 8KBT
3g

ð4Þ

Eq. (4) is referred as the Smoluchowski’s collision rate coeffi-
cient (SCRT). Although the differences between theoretical and
experimental values were rather high, the validity of SCRT equa-
tion was postulated (Gedan et al., 1984) so that it has been used
for decades. Furthermore, given that Eq. (1) is derived from Fick’s
laws, it implies, obviously, that collision depends on the concentra-
tion gradient around the target entities, which should act as a sink.
However, how can a single molecule or particle by itself give rise to
a ‘‘sink” such that a concentration gradient around it can be
formed? If there is not a concentration gradient then simply Fick’s
laws do not apply.

In this work, the Smoluchowski coefficient is questioned for
entity radii <50 nm and an alternative equation that exhibit better
agreement with experimental data (Higashitani et al., 1991) is
proposed.

2. Development of the mathematical model

If [N] represents the number of entities per volume unit, then its
inverse represents the volume v0 associated with one entity:

v 0 ¼ 1
N½ �

� �
ð5Þ

Assuming cubic geometry and that the entities are located in
the center of their corresponding cube (see Fig. 1a), then the length
of one side of a cube is equal to the characteristic distance d
between entities. Accordingly, d can be calculated by

d ¼ 1
N½ �

� �1=3

ð6Þ

If it is assumed that a given entity can be surrounded by other
26 entities and that every one of them is located within its own
cube then the scenario can be as that shown in Fig. 1b. As it will
be shown below, notwithstanding this simplification it seems to
be that the approach of a cubic lattice is enough for describing
the behavior of the experimental data

The central cube corresponds to the one of the particle which
we are interested in describing its collision rate with any of the
26 surrounding entities; hence the total volume v associated to
the collision process corresponds to the volume of the 27 cubes,

v ¼ 27v 0 ð7Þ
In order to estimate the collision probability ci,j0 between an

entity i and an entity j, the following assumptions were made:
(a) entity i has to diffuse in the direction towards the cube where
entity j is contained, that is, within the tetrahedron shown in
Fig. 1c; (b) entity j has to diffuse in the correct path to intercept
particle i just at some point on the shared face of the two contigu-
ous cubes. For sake of simplicity, the center of the shared surface is
considered as the mean collision region, so that for the collision to
occur, it is necessary that entity j follows a path within the imag-
inary cone-like region illustrated in Fig. 1c.

The probability ci for scenario a, can be calculated by dividing
the volume of the tetrahedron vtetr by the volume of cube vcube,

ci ¼
v tetr

vcube
¼ 1

6
ð8Þ

Analogously, the probability cj for scenario b, can be calculated
by dividing the volume of the cone vcone by the volume of imagi-
nary sphere vsphere, indicated with a dashed line on Fig. 1c.

cj ¼
vcone

v sphere A
¼ rj2

d2
ð9Þ

Therefore, the collision probability ci,j0 between a entity i and an
entity j, is given by

c0i;j ¼ cicj ¼
1
6

� �
rj2

d2
ð10Þ

Hence the collision probability ci,j between a entity iwith any of
the 26 surrounding entities is given by

ci;j ¼ 26c0ij ð11Þ

Fig. 1. Geometrical considerations for the proposed mathematical model: (a) Distance between two contiguous entities and their associated volume assuming cubic
geometry; (b) representation of 27 entities and their associated volume; the central particle can collide with any of the 26 surrounding entities; (c) geometrical considerations
for the collision probability between entity i and j; entity i has to diffuse within the tetrahedron toward the adjacent cube and, particle j has to diffuse within the cone-like
region.
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