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h i g h l i g h t s

� Process diagnosis requires causal information to be successful completed.
� Current process monitoring methods are based on acausal models.
� We propose a plug-in approach that integrates causal information into standard process monitoring.
� Smearing-out effect is reduced without compromising fault detection and diagnosis.
� Results obtained recommend the use of the static Non-Markovian SET as pre-processing for the Hotelling’s T2 methodology.
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a b s t r a c t

Process monitoring is a key activity in modern industrial processes. Even though abnormality detection
can be rather effectively done with resort to acausal correlation models of the variables normal operating
conditions associations, fault diagnosis and troubleshooting do require causal information. In this article,
we propose a new plug-in approach that brings the causal network structure into a classical monitoring
scheme based on the Hotelling’s T2 methodology. The modular plug-in nature associated to a well-known
monitoring scheme aims at facilitating the access to the benefits of using more information about the sys-
tem structure in fault analysis and diagnosis. The pre-processing module consists of a Sensitivity
Enhancing Transformation (SET) that incorporates the network structure inferred from normal operation
data, which has recently conducted to significant improvements for monitoring the correlation structure
of industrial processes. Additionally, we consider both Markovian and Non-Markovian network struc-
tures in the development of the SET. The proposed methodology was tested with two simulated case
studies (a CSTR and the Tennessee Eastman benchmark) and compared with several alternative
approaches. The results obtained recommend the use of the static Non-Markovian SET as pre-
processing for the Hotelling’s T2 methodology.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical Process Monitoring is an activity of critical impor-
tance in today’s highly complex industrial processes. Not only this
activity should provide a reliable and robust source of earlier
alarms of evolving process upsets or abrupt faults, but also to
assist, as much as possible, in the subsequent stage of fault diagno-
sis and troubleshooting. This last aspect of a process monitoring
platform has been growing in importance, as the time spent in
diagnosing the abnormality is usually much larger than the delay
in detecting its occurrence. The importance of this difference,

which can span orders of magnitude (for instance detection can
be done in seconds or minutes, while a proper diagnosis may
require hours to days), has not yet been fully acknowledged by
the scientific community, taking into consideration the dominant
emphasis in metrics related to speed of detection in comparison
studies, such as the average run length (ARL) or the related average
time to signal (ATS), when compared to accuracy rates in diagnosis.
We believe it would be highly desirable, especially to practitioners
and process owners, that both perspectives are considered on an
equal footing, reflecting their actual role in industrial process
monitoring.

However, fault detection and fault diagnosis, even though
highly connected in the workflow of process monitoring, are fun-
damentally different tasks. Fault detection aims at signaling any
significant deviation from normal operation behavior, by analyzing
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data routinely collected from the process. Fault diagnosis, on the
other hand, is dedicated to finding out the origin of the abnormal-
ity, so that the root cause can be isolated and analysed for its crit-
icality, from which a decision will be made on the actions to take
(e.g., stop the process immediately; continue with the process
without any changes; accommodate the fault and continue with
the operation; etc.). Underlying these two distinct goals, are differ-
ent modelling and analysis premises. For process detection, a nor-
mal operation conditions (NOC) model describing the main
associations and regularities between process variables is suffi-
cient. It does not have to be causal, i.e., it does not have to provide
the directionality of effects propagation. Instead, it just has to
faithfully reflect the normal structure of associations, in an efficient
and robust way, so that any existing discrepancy can be rapidly
detected and signaled. This is the true nature of the NOC models
used in multivariate and megavariate (or high-dimensional) statis-
tical process control, where the multivariate normal distribution or
principal component analysis (PCA) provide the acausal (also
referred as non-causal) probabilistic model structures that support
fault detection. On the other hand, fault diagnosis and trou-
bleshooting, imply starting from the observed effects or symptoms,
and then tracing back the causes that may have originated them.
For such, some type of causal mapping, of a quantitative or quali-
tative nature, is required to conduct the analysis. Relying on acau-
sal NOC models for fault diagnosis, is prone to ambiguous and
sometime erroneous findings. This is a consequence of questioning
a model that only contains acausal association information, expect-
ing that it will reveal, without modification, cause-effect relation-
ships justifying the abnormal observed patterns. A well-known
manifestation of this misuse is the smearing-out effect in PCA-
based statistical process monitoring schemes, which causes non-
faulty variables to have significant contributions due to fault prop-
agation (Van den Kerkhof et al., 2013). The different nature of
detection and diagnosis tasks and associated modelling require-
ments is another aspect that has also been quite often overlooked
in process monitoring studies, a possible consequence of which
being a certain underappreciation of the limitations of some cur-
rent data-driven diagnosis tools.

In order to circumvent the diagnosis limitations of classic statis-
tical process monitoring (SPM) schemes, several structured
approaches have been proposed in the literature, namely using
transfer entropy (Bauer et al., 2007; Shu and Zhao, 2013), time
delay analysis (Bauer and Thornhill, 2008), Granger causality
(Yuan and Qin, 2012) and causal maps (Chiang and Braatz, 2003;
Cheng et al., 2008; Thambirajah et al., 2009). These structured
SPM approaches, insert, through different means and with differ-
ent extents, information about the causal structure of the system
in the monitoring procedure. They usually end up constituting a
new monitoring scheme, with novel statistics and algorithms. This
represents a challenge to practitioners willing to improve the mon-
itoring activities in their processes, for which they must first fully
realize the conceptual benefits of the new proposals, and secondly
they must be able to program the algorithms and implement the
methods using the available resources. Given the limited nature
of such resources in practice, most proposals remain untested
and vastly unexplored. Therefore, in this article, we opt to imple-
ment a plug-in approach to structure integration in process moni-
toring, where a specific pre-processing module brings the causal
structure required for diagnosis. This module is then easily inte-
grated (plugged-in) in a standard monitoring scheme based on
the Hotelling’s T2 statistic. The module regards a specific type of
pre-processing, called Sensitivity Enhancing Transformation
(SET), that incorporates the network structure of the process vari-
ables. SET’s have already conducted to significant improvements
for monitoring the correlation structure of industrial processes
(Rato and Reis, 2014a,b, 2015a,b,c). They consist in whitening each

variable by regressing it onto the set of variables with a direct
effect on it (its causal parents), following a Markovian approach.
In the present work, we also consider for the first time to regress
each target variable on all variables with indirect, but causally
related effects, leading to a Non-Markovian modelling approach.

In the following subsections, the current fault detection and
diagnose modes of PCA and related techniques that are relevant
for the purposes of this article, are described. Then, the proposed
SPM methodology is presented in detail. In the next sections, this
approach is tested and comparatively assessed against current
benchmarks, and the results obtained discussed. The paper ends
with a conclusions section summarizing the main findings of this
work.

2. PCA-based process monitoring for detection and diagnosis
and the MTY decomposition

PCA is the de facto standard platform for performing multi- and
megavariate (or high-dimensional) statistical process monitoring
(SPM) of industrial processes and any new proposal in this domain
should consider not only this technique as benchmark, but also its
related developments for handling more properly any particular
characteristics of the system under consideration, such as dynam-
ics, non-linearity, non-stationarity, etc., in other to conduct a fair,
consistent and unbiased comparison. In this subsection the back-
ground of process monitoring via PCA modelling is provided. Focus
is given to the cases of static and dynamic PCA as these are the
application scenarios more often encountered in practice. An intro-
duction to contribution plots for the purpose of fault diagnosis will
be also provided. Finally, a multivariate diagnosis procedure pro-
posed by Mason, Tracy and Young (henceforth designated by
MTY) (Mason et al., 1995) is reviewed. Even though this methodol-
ogy, without modification, is of limited application in large scale
(megavariate or high-dimensional) scenarios, it is opportune to
consider it here for better contextualizing the proposed methodol-
ogy, which shares some algorithmic similarities and concepts.

2.1. Principal component analysis

Principal component analysis (PCA) is a latent variable method-
ology focused on reducing the data dimensionality by finding a
subspace around which the majority of data variability is concen-
trated. By doing so, the original data matrix, X, with n observations
and m variables is decomposed as:

X ¼ TPT þ E ð1Þ
where Tn�p is the matrix of PCA scores, Pm�p is the matrix with the
PCA loadings, and En�m is the residual matrix. p stands for the num-
ber of retained principal components (PC). As PCA is scale-
dependent, the data matrix, X, must be properly pre-processed in
some meaningful way in order to guarantee the quality of the anal-
ysis. The most common pre-processing is to center all variables to
zero mean and scale them to unit variance (defined as ‘‘autoscal-
ing”), but many other approaches are available (Martens and
Naes, 1989; Naes et al., 2002). In Section 3, another pre-
processing procedure will be put forward, which is based on the
causal network linking the observed variables.

By application of PCA, the original data is effectively decom-
posed into two complementary subspaces, which will be moni-
tored separately. As the number of retained principal
components is low, say p, and they are uncorrelated by design,
the Hotelling’s T2 procedure can be applied without limitations
to monitor the PCA subspace (Jackson, 1959; Jackson and
Mudholkar, 1979). Therefore, the following monitoring statistic is
applied for monitoring the PCA subspace:
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